scholarly journals C-type cytochrome-initiated reduction of bacterial lytic polysaccharide monooxygenases.

2021 ◽  
Author(s):  
Jessie Branch ◽  
Badri S Rajagopal ◽  
Alessandro Paradisi ◽  
Nick Yates ◽  
Peter J Lindley ◽  
...  

The release of glucose from lignocellulosic waste for subsequent fermentation into biofuels holds promise for securing humankind's future energy needs. The discovery of a set of copper dependent enzymes known as lytic polysaccharide monooxygenases (LPMOs) has galvanized new research in this area. LPMOs act by oxidatively introducing chain breaks into cellulose and other polysaccharides, boosting the ability of cellulases to act on the substrate. Although several proteins have been implicated as electron sources in fungal LPMO biochemistry, no equivalent bacterial LPMO electron donors have been previously identified, although the proteins Cbp2D and E from Cellvibrio japonicus have been implicated as potential candidates. Here we analyze a small c-type cytochrome (CjX183) present in Cellvibrio japonicus Cbp2D, and show that it can initiate bacterial CuII/I LPMO reduction and also activate LPMO-catalyzed cellulose-degradation. In the absence of cellulose, CjX183-driven reduction of the LPMO results in less H2O2 production from O2, and correspondingly less oxidative damage to the enzyme than when ascorbate is used as the reducing agent. Significantly, using CjX183 as the activator maintained similar cellulase boosting levels relative to the use of an equivalent amount of ascorbate. Our results therefore add further evidence to the impact that the choice of electron source can have on LPMO action. Furthermore, the study of Cbp2D and other similar proteins may yet reveal new insight into the redox processes governing polysaccharide degradation in bacteria.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Riin Kont ◽  
Bastien Bissaro ◽  
Vincent G. H. Eijsink ◽  
Priit Väljamäe

AbstractLytic polysaccharide monooxygenases (LPMOs) are widely distributed in Nature, where they catalyze the hydroxylation of glycosidic bonds in polysaccharides. Despite the importance of LPMOs in the global carbon cycle and in industrial biomass conversion, the catalytic properties of these monocopper enzymes remain enigmatic. Strikingly, there is a remarkable lack of kinetic data, likely due to a multitude of experimental challenges related to the insoluble nature of LPMO substrates, like cellulose and chitin, and to the occurrence of multiple side reactions. Here, we employed competition between well characterized reference enzymes and LPMOs for the H2O2 co-substrate to kinetically characterize LPMO-catalyzed cellulose oxidation. LPMOs of both bacterial and fungal origin showed high peroxygenase efficiencies, with kcat/KmH2O2 values in the order of 105–106 M−1 s−1. Besides providing crucial insight into the cellulolytic peroxygenase reaction, these results show that LPMOs belonging to multiple families and active on multiple substrates are true peroxygenases.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
James Li ◽  
Laleh Solhi ◽  
Ethan D. Goddard-Borger ◽  
Yann Mathieu ◽  
Warren W. Wakarchuk ◽  
...  

Abstract Background The discovery of lytic polysaccharide monooxygenases (LPMOs) has fundamentally changed our understanding of microbial lignocellulose degradation. Cellulomonas bacteria have a rich history of study due to their ability to degrade recalcitrant cellulose, yet little is known about the predicted LPMOs that they encode from Auxiliary Activity Family 10 (AA10). Results Here, we present the comprehensive biochemical characterization of three AA10 LPMOs from Cellulomonas flavigena (CflaLPMO10A, CflaLPMO10B, and CflaLPMO10C) and one LPMO from Cellulomonas fimi (CfiLPMO10). We demonstrate that these four enzymes oxidize insoluble cellulose with C1 regioselectivity and show a preference for substrates with high surface area. In addition, CflaLPMO10B, CflaLPMO10C, and CfiLPMO10 exhibit limited capacity to perform mixed C1/C4 regioselective oxidative cleavage. Thermostability analysis indicates that these LPMOs can refold spontaneously following denaturation dependent on the presence of copper coordination. Scanning and transmission electron microscopy revealed substrate-specific surface and structural morphological changes following LPMO action on Avicel and phosphoric acid-swollen cellulose (PASC). Further, we demonstrate that the LPMOs encoded by Cellulomonas flavigena exhibit synergy in cellulose degradation, which is due in part to decreased autoinactivation. Conclusions Together, these results advance understanding of the cellulose utilization machinery of historically important Cellulomonas species beyond hydrolytic enzymes to include lytic cleavage. This work also contributes to the broader mapping of enzyme activity in Auxiliary Activity Family 10 and provides new biocatalysts for potential applications in biomass modification.


2019 ◽  
Vol 20 (18) ◽  
pp. 4594 ◽  
Author(s):  
Xiaoli Zhou ◽  
Xiaohua Qi ◽  
Hongxia Huang ◽  
Honghui Zhu

Lytic polysaccharide monooxygenases (LPMOs) are key enzymes in both the natural carbon cycle and the biorefinery industry. Understanding the molecular basis of LPMOs acting on polysaccharide substrates is helpful for improving industrial cellulase cocktails. Here we analyzed the sequences, structures, and substrate binding modes of LPMOs to uncover the factors that influence substrate specificity and regioselectivity. Our results showed that the different compositions of a motif located on L2 affect the electrostatic potentials of substrate binding surfaces, which in turn affect substrate specificities of AA10 LPMOs. A conserved Asn at a distance of 7 Å from the active center Cu might, together with the conserved Ser immediately before the second catalytic His, determine the localization of LPMOs on substrate, and thus contribute to C4-oxidizing regioselectivity. The findings in this work provide an insight into the molecular basis of substrate specificity and regioselectivity of LPMOs.


Author(s):  
Natalia Nowakowska

Our three existing master narratives of the early Reformation in Poland are all over a century old and mutually contradictory, drawing on different sources to serve differing confessional and national/ist agendas. This chapter offers a fresh narrative of the impact of Lutheranism on the Polish composite monarchy to c.1540, synthesizing these older accounts and updating them with new research findings. This is a narrative in three parts: early signs (1517–24), the great Reformation year (1525), and aftershocks (1526–40). The chapter discusses the challenges of measuring ‘Lutheran’ sentiment, sets these Polish-Prussian events clearly in their comparative European context, and considers what implications they might have for that bigger, familiar tale. It stresses the precocity of Sigismund I’s monarchy, which saw the most far-reaching urban and violent Reformation in 1520s Europe (Danzig), a peasant Reformation rising, and Christendom’s first territorial-princely Reformation, in Ducal Prussia.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Lukas Rieder ◽  
Katharina Ebner ◽  
Anton Glieder ◽  
Morten Sørlie

Abstract Background Lytic polysaccharide monooxygenases (LPMOs) are attracting large attention due their ability to degrade recalcitrant polysaccharides in biomass conversion and to perform powerful redox chemistry. Results We have established a universal Pichia pastoris platform for the expression of fungal LPMOs using state-of-the-art recombination cloning and modern molecular biological tools to achieve high yields from shake-flask cultivation and simple tag-less single-step purification. Yields are very favorable with up to 42 mg per liter medium for four different LPMOs spanning three different families. Moreover, we report for the first time of a yeast-originating signal peptide from the dolichyl-diphosphooligosaccharide-protein glycosyltransferase subunit 1 (OST1) form S. cerevisiae efficiently secreting and successfully processes the N-terminus of LPMOs yielding in fully functional enzymes. Conclusion The work demonstrates that the industrially most relevant expression host P. pastoris can be used to express fungal LPMOs from different families in high yields and inherent purity. The presented protocols are standardized and require little equipment with an additional advantage with short cultivation periods.


Sexualities ◽  
2020 ◽  
pp. 136346072098169
Author(s):  
Aidan McKearney

This article focuses on the experiences of gay men in the rural west and northwest region of Ireland, during a period of transformational social and political change in Irish society. These changes have helped facilitate new forms of LGBTQI visibility, and local radicalism in the region. Same-sex weddings, establishment of rural LGBT groups and marching under an LGBT banner at St Patricks Day parades would have been unthinkable in the recent past; but they are now becoming a reality. The men report continuing challenges in their lives as gay men in the nonmetropolitan space, but the emergence of new visibility, voice and cultural acceptance of LGBT people is helping change their lived experiences. The study demonstrates the impact of local activist LGBT citizens. Through their testimonies we can gain an insight into the many, varied and interwoven factors that have interplayed to create the conditions necessary for the men to: increasingly define themselves as gay to greater numbers of people in their localities; to embrace greater visibility and eschew strategies of silence; and aspire to a host of legal, political, cultural and social rights including same-sex marriage. Organic forms of visibility and local radicalism have emerged in the region and through an analysis of their testimonies we can see how the men continue to be transformed by an ever-changing landscape.


Sign in / Sign up

Export Citation Format

Share Document