scholarly journals special feature: from in vitro curiosity to contributor to cell pathology

2006 ◽  
Vol 28 (4) ◽  
pp. 33-36
Author(s):  
Meredith F. Ross ◽  
Michael P. Murphy

The MPT (mitochondrial permeability transition) occurs when a protein pore opens in the mitochondrial inner membrane in response to calcium overloading, adenine nucleotide depletion and oxidative stress, causing the disruption of mitochondrial function. For a number of years, this intriguing phenomenon was thought to be an in vitro curiosity of uncertain relevance to mitochondrial function within cells and tissues. However, this view was fundamentally altered with the help of three papers published in the Biochemical Journal in the 1980s and 1990s. Together, these studies demonstrated that CsA (cyclosporin A) selectively blocked induction of the MPT, that the mitochondrial matrix protein cyclophilin D was required for induction of the MPT, and that the MPT contributed to tissue damage during IR (ischaemia–reperfusion) injury.

2000 ◽  
Vol 28 (2) ◽  
pp. 170-177 ◽  
Author(s):  
A. P. Halestrap ◽  
E. Doran ◽  
J. P. Gillespie ◽  
A. O'Toole

Mitochondria play a central role in both apoptosis and necrosis through the opening of the mitochondrial permeability transition pore (MPTP). This is thought to be formed through a Ca2+-triggered conformational change of the adenine nucleotide translocase (ANT) bound to matrix cyclophilin-D and we have now demonstrated this directly by reconstitution of the pure components. Opening of the MPTP causes swelling and uncoupling of mitochondria which, unrestrained, leads to necrosis. In ischaemia/reperfusion injury of the heart we have shown MPTP opening directly. Recovery of hearts correlates with subsequent closure, and agents that prevent opening or enhance closure protect from injury. Transient MPTP opening may also be involved in apoptosis by initially causing swelling and rupture of the outer membrane to release cytochrome c (cyt c), which then activates the caspase cascade and sets apoptosis in motion. Subsequent MPTP closure allows ATP levels to be maintained, ensuring that cell death remains apoptotic rather than necrotic. Apoptosis in the hippocampus that occurs after a hypoglycaemic or ischaemic insult is triggered by this means. Other apoptotic stimuli such as cytokines or removal of growth factors also involve mitochondrial cyt c release, but here there is controversy over whether the MPTP is involved. In many cases cyt c release is seen without any mitochondrial depolarization, suggesting that the MPTP does not open. Recent data of our own and others have revealed a specific outer-membrane cyt c-release pathway involving porin that does not release other intermembrane proteins such as adenylate kinase. This is opened by pro-apototic members of the Bcl-2 family such as BAX and prevented by anti-apoptotic members such as Bcl-xL. Our own data suggest that this pathway may interact directly with the ANT in the inner membrane at contact sites.


2004 ◽  
Vol 383 (1) ◽  
pp. 101-109 ◽  
Author(s):  
Yanmin LI ◽  
Nicholas JOHNSON ◽  
Michela CAPANO ◽  
Mina EDWARDS ◽  
Martin CROMPTON

Cyclophilin-D is a peptidylprolyl cis–trans isomerase of the mitochondrial matrix. It is involved in mitochondrial permeability transition, in which the adenine nucleotide translocase of the inner membrane is transformed from an antiporter to a non-selective pore. The permeability transition has been widely considered as a mechanism in both apoptosis and necrosis. The present study examines the effects of cyclophilin-D on the permeability transition and lethal cell injury, using a neuronal (B50) cell line stably overexpressing cyclophilin-D in mitochondria. Cyclophilin-D overexpression rendered isolated mitochondria far more susceptible to the permeability transition induced by Ca2+ and oxidative stress. Similarly, cyclophilin-D overexpression brought forward the onset of the permeability transition in intact cells subjected to oxidative stress. In addition, in the absence of stress, the mitochondria of cells overexpressing cyclophilin-D maintained a lower inner-membrane potential than those of normal cells. All these effects of cyclophilin-D overexpression were abolished by cyclosporin A. It is concluded that cyclophilin-D promotes the permeability transition in B50 cells. However, cyclophilin-D overexpression had opposite effects on apoptosis and necrosis; whereas NO-induced necrosis was promoted, NO- and staurosporine-induced apoptosis were inhibited. These findings indicate that the permeability transition leads to cell necrosis, but argue against its involvement in apoptosis.


2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Allison M McGee ◽  
Kyle S McCommis ◽  
M H Laughlin ◽  
Douglas K Bowles ◽  
Christopher P Baines

Hypercholesterolemia has been suggested to have direct negative effects on myocardial function due to increased reactive oxygen species (ROS) generation and increased myocyte death. Mitochondrial permeability transition (MPT) is a significant mediator of cell death, which is enhanced by ROS generation and attenuated by exercise training. The purpose of this study was to investigate the effect of hypercholesterolemia on the MPT response of cardiac mitochondria. We hypothesized that familial hypercholesterolemic (FH) pigs would have an enhanced MPT response, and that exercise training could reverse this phenotype. FH pigs were obtained from the University of Wisconsin. Control, normolipidemic farm pigs were maintained on standard pig chow. After 4 months on a high-fat diet, the FH pigs were switched to the standard pig chow, and randomized to sedentary or exercise groups. The exercise group underwent a progressive treadmill-based training program for 4 months. At the end of the training protocol the animals were sacrificed and the heart removed. MPT was assessed by mitochondrial swelling in response to Ca2+. Protein nitrotyrosylation, GSH levels, and antioxidant enzyme expression were also examined. FH pigs did show an increased MPT response despite no change in the expression of putative MPT pore components adenine nucleotide translocase (ANT), mitochondrial phosphate carrier (PiC), and cyclophilin-D (CypD). FH also caused increased oxidative stress, depicted by increased protein nitrotyrosylation and decreased GSH levels. This was associated with concomitant decreases in the expression of mitochondrial antioxidant enzymes manganese superoxide dismutase (MnSOD) and thioredoxin-2 (Trx2). However, chronic exercise training was able to normalize the MPT response in FH pigs, reduce oxidative stress, and increase MnSOD expression. We conclude that hypercholesterolemia causes increased oxidative stress and enhances the MPT response in the porcine myocardium, and that exercise training can correct for both the increased oxidative stress and MPT alterations observed with hypercholesterolemia.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Na Dong ◽  
Zhong Dong ◽  
Ying Chen ◽  
Xiaosu Gu

Parkinson’s disease (PD) is the second most common neurodegenerative disease. Crocetin, derived from saffron, exerts multiple pharmacological properties, such as anti-inflammatory, antioxidant, antifatigue, and anticancer effects. However, the effect of crocetin on PD remains unclear. In this study, we designed experiments to investigate the effect of crocetin against MPTP-induced PD models and the underlying mechanisms. Our results showed that crocetin treatment attenuates MPTP-induced motor deficits and protects dopaminergic neurons. Both in vivo and in vitro experiments demonstrated that crocetin treatment decreased the expression of inflammatory associated genes and inflammatory cytokines. Furthermore, crocetin treatment protected mitochondrial functions against MPP+ induced damage by regulating the mPTP (mitochondrial permeability transition pore) viability in the interaction of ANT (adenine nucleotide translocase) and Cyp D (Cyclophilin D) dependent manner. Therefore, our results demonstrate that crocetin has therapeutic potential in Parkinson’s disease.


1998 ◽  
Vol 336 (2) ◽  
pp. 287-290 ◽  
Author(s):  
Kuei WOODFIELD ◽  
Alexander RÜCK ◽  
Dieter BRDICZKA ◽  
Andrew P. HALESTRAP

A fusion protein between cyclophilin-D (CyP-D) and glutathione S-transferase (GST) was shown to bind to purified liver inner mitochondrial membranes (IMMs) in a cyclosporin A (CsA)-sensitive manner. Binding was enhanced by diamide treatment of the IMMs. Immobilized GST–CyP-D avidly bound a single 30 kDa protein present in Triton X-100-solubilized IMMs; immunoblotting showed this to be the adenine nucleotide translocase (ANT). Binding was prevented by pretreatment of the CyP-D with CsA, but not with cyclosporin H. Purified ANT also bound specifically to GST–CyP-D, but porin did not, even in the presence of ANT.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Melissa N Quinsay ◽  
Shivaji Rikka ◽  
M Richard Sayen ◽  
Jeffery D Molkentin ◽  
Roberta A Gottlieb ◽  
...  

Bnip3 is a member of the BH3-only subfamily of pro-apoptotic Bcl-2 proteins and is associated with mitochondrial dysfunction and cell death in the myocardium. The pro-apoptotic Bcl-2 proteins mediate mitochondrial dysfunction independent of the mitochondrial permeability transition pore (mPTP). However, Bnip3 has been reported to mediate cell death via the mPTP. In this study, we investigated the mechanism(s) by which Bnip3 causes mitochondrial dysfunction. Using a mitochondrial swelling assay to assess pore opening, we found that addition of 200 microM Ca2+ to mitochondria isolated from rat hearts induced rapid swelling of mitochondria and release of cytochrome c (cyto c). Bnip3 also induced mitochondrial swelling and cyto c release, but always at a slower rate and to a greater degree, suggesting that Bnip3 mediates swelling via a different mechanism. Cyclosporin A (CsA), an inhibitor of mPTP opening, prevented Ca2+-induced swelling and cyto c release, but had no effect on Bnip3. Another BH3-only protein, tBid, caused release of cyto c but failed to induce swelling of mitochondria. Interestingly, Bnip3, but not Ca2+ and tBid, induced release of the matrix protein MnSOD. Cyclophilin D (cycD) is an essential component of the mPTP and heart mitochondria isolated from cycD−/− mice were resistant to Ca2+-, but not to Bnip3-induced swelling and cyto c release. Also, tBid caused cyto c release without mitochondrial swelling in the absence of cycD. To further explore the mPTP as a downstream effector of Bnip3-mediated cell death, we assessed cell death in mouse embryonic fibroblasts (MEFs) isolated from wild type (wt) and cycD−/− mice. Infection with an adenovirus expressing Bnip3 caused significant cell death in wt (52.8±1.8%) and cycD−/− (61.8±6.1%) MEFs as measured by LDH release. In addition, both Bnip3 and opening of the mPTP have been reported to initiate upregulation of autophagy. Monitoring of GFP-LC3 incorporation into autophagosomes by fluorescence microscopy revealed that Bnip3 infection induced autophagy in wt (86.5±6.6%) and cycD−/− (96.4±1.4%) MEFs (n=3, p<0.05). Thus, these studies suggest that Bnip3 mediates permeabilization of the inner and outer mitochondrial membranes via a novel mechanism that is different from other BH3-only proteins. This research has received full or partial funding support from the American Heart Association, AHA National Center.


1999 ◽  
Vol 147 (7) ◽  
pp. 1493-1502 ◽  
Author(s):  
Manuel K.A. Bauer ◽  
Alexis Schubert ◽  
Oliver Rocks ◽  
Stefan Grimm

Here, we describe the isolation of adenine nucleotide translocase-1 (ANT-1) in a screen for dominant, apoptosis-inducing genes. ANT-1 is a component of the mitochondrial permeability transition complex, a protein aggregate connecting the inner with the outer mitochondrial membrane that has recently been implicated in apoptosis. ANT-1 expression led to all features of apoptosis, such as phenotypic alterations, collapse of the mitochondrial membrane potential, cytochrome c release, caspase activation, and DNA degradation. Both point mutations that impair ANT-1 in its known activity to transport ADP and ATP as well as the NH2-terminal half of the protein could still induce apoptosis. Interestingly, ANT-2, a highly homologous protein could not lead to cell death, demonstrating the specificity of the signal for apoptosis induction. In contrast to Bax, a proapoptotic Bcl-2 gene, ANT-1 was unable to elicit a form of cell death in yeast. This and the observed repression of apoptosis by the ANT-1–interacting protein cyclophilin D suggest that the suicidal effect of ANT-1 is mediated by specific protein–protein interactions within the permeability transition pore.


2021 ◽  
Author(s):  
Rubens Sautchuk ◽  
Brianna H Kalicharan ◽  
Katherine Escalera-Rivera ◽  
Jennifer Jonason ◽  
George Porter ◽  
...  

Cyclophilin D (CypD) promotes opening of the mitochondrial permeability transition pore (MPTP) which plays a key role in both cell physiology and pathology. It is, therefore beneficial for cells to tightly regulate CypD and MPTP but little is known about such regulation. We have reported before that CypD is downregulated and MPTP deactivated during differentiation in various tissues. Herein, we identify BMP/Smad signaling, a major driver of differentiation, as a transcriptional repressor of the CypD gene, Ppif. Using osteogenic induction of mesenchymal lineage cells as a model of BMP/Smad-dependent differentiation, we show that CypD is in fact transcriptionally repressed during this process. The importance of such CypD downregulation is evidenced by the negative effect of CypD ‘rescue’ via gain-of-function on osteogenesis both in vitro and in vivo. In sum, we characterized BMP/Smad signaling as a regulator of CypD expression and elucidated the role of CypD downregulation during cell differentiation.


Sign in / Sign up

Export Citation Format

Share Document