scholarly journals Legume root nodule symbiosis: An evolving story in biology and biotechnology

2013 ◽  
Vol 35 (4) ◽  
pp. 14-18 ◽  
Author(s):  
Nicholas J. Brewin

The evolution of biological nitrogen fixation is central to the evolution of life on earth. Nitrogen is an essential component of proteins and nucleic acids and its restricted availability to living organisms has often been a major factor limiting growth. Despite the overwhelming abundance of N2 gas in the atmosphere, di-nitrogen is chemically inaccessible to most forms of life. For their growth and metabolism, most organisms use the ‘fixed’ forms of nitrogen, either as ammonium (NH4+) or as nitrate (NO3-), or derivatives thereof. However, the major input into the global nitrogen cycle is through the reductive process of biological nitrogen fixation which converts atmospheric N2 into ammonia (NH3). This process evolved in bacteria and/or archaea over 2.5 billion years ago while the planet still had a reducing atmosphere. Today, biological nitrogen fixation is still restricted to the bacteria and archaea. The legume root nodule symbiosis allows the host plant to benefit directly by association with soil bacteria, collectively termed rhizobia, which fix nitrogen as endosymbionts.

Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1941
Author(s):  
Jerzy Wielbo

Nitrogen is essential for the growth and functioning of all living organisms; however, only 2% of Earth’s nitrogen is available for them [...]


1985 ◽  
Vol 33 (5) ◽  
pp. 595 ◽  
Author(s):  
YM Barnet ◽  
PC Catt ◽  
DH Hearne

This paper reports a study of biological nitrogen fixation in two sand dune regions of New South Wales where planted Acacia spp. had been used in revegetation programmes. At one location (Bridge Hill Ridge), natural regrowth had produced a complex plant community, and native legumes in addition to the planted acacias were present. The other area (Wanda Beach) was a grossly disturbed site which contained only the planted species. Symbiotic fixation in association with Australian legumes occurred at both locations at rates within the range reported by other authors. Distinct seasonal changes were apparent, with higher activities in the cooler months. The legume association seemed the only source of biologically fixed nitrogen at Bridge Hill Ridge, but at Wanda Beach cyanobacteria in an algal mat also made a contribution. Fast and slow-growing bacterial strains were obtained from root nodules of native legumes at both sites and were classed as Rhizobium sp. and Bradyrhizobium sp., respectively. This division was supported by the pattern of serological affinities of the isolates and by differences in their protein profiles demonstrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Two atypical types of root-nodule bacteria were found at Bridge Hill Ridge: non-nodulating, fast-growing isolates and an abnormally slow-growing Bradyrhizobium sp.


Author(s):  
Ishaq Z. ◽  

Biological Nitrogen fixation is one of the important aspects of organic agriculture gaining considerable attention globally. Information about the number of viable indigenous Bradyrhizobia in soils planted with legumes and their capacity to nodulate is a valuable tool in developing strategies to improve biological nitrogen fixation. Such strategies could potentially lead to increased soybean yields at low cost. This study was conducted to isolate and enumerate Bradyrizobium species dwelling in the root nodule of soybean plant using Bradyrhizobium japonicum selective medium (BJSM). Twenty (20) strains of Bradyrizobium species were isolated from the root nodules of soybean plants harvested from Ahmadu Bello University farm site, located at Bomo district of Sabongari local government area, Kaduna State, Nigeria. This was achieved using the streak method of isolation on BJSM. Ninety percent (18) of these isolates were confirmed as Bradyrizobium species using the plant infection test as they were able to nodulate the roots of soybean plants. The enumeration of the indigenous Bradyrizobium species gave a count ranging from 2.07x105 - 4.0x106 CFU/mL. Thus, the number of Bradyrhizobia obtained in the soil of this study is sufficient to achieve satisfactory results on nodulation and nitrogen fixation. Key words: Soybean, Bradyrhizobium species, Nodulation, Nitrogen fixation


2020 ◽  
Vol 17 (13) ◽  
pp. 3643-3657
Author(s):  
Tong Yu ◽  
Qianlai Zhuang

Abstract. Biological nitrogen fixation plays an important role in the global nitrogen cycle. However, the fixation rate has been usually measured or estimated at a particular observational site. To quantify the fixation amount at the global scale, process-based models are needed. This study develops a biological nitrogen fixation model to quantitatively estimate the nitrogen fixation rate by plants in a natural environment. The revised nitrogen module better simulates the nitrogen cycle in comparison with our previous model that has not considered the fixation effects. The new model estimates that tropical forests have the highest fixation rate among all ecosystem types, which decreases from the Equator to the polar region. The estimated nitrogen fixation in global terrestrial ecosystems is 61.5 Tg N yr−1 with a range of 19.8–107.9 Tg N yr−1 in the 1990s. Our estimates are relatively low compared to some early estimates using empirical approaches but comparable to more recent estimates that involve more detailed processes in their modeling. Furthermore, the contribution of nitrogen made by biological nitrogen fixation depends on ecosystem type and climatic conditions. This study highlights that there are relatively large effects of biological nitrogen fixation on ecosystem nitrogen cycling. and the large uncertainty of the estimation calls for more comprehensive understanding of biological nitrogen fixation. More direct observational data for different ecosystems are in need to improve future quantification of fixation and its impacts.


2019 ◽  
Vol 20 (1) ◽  
pp. 122-132 ◽  
Author(s):  
Frédérique Reverchon ◽  
Kadum M. Abdullah ◽  
Shahla Hosseini Bai ◽  
Emanuel Villafán ◽  
Timothy J. Blumfield ◽  
...  

Plants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1011
Author(s):  
Abdoulaye Soumare ◽  
Abdala G. Diedhiou ◽  
Moses Thuita ◽  
Mohamed Hafidi ◽  
Yedir Ouhdouch ◽  
...  

For all living organisms, nitrogen is an essential element, while being the most limiting in ecosystems and for crop production. Despite the significant contribution of synthetic fertilizers, nitrogen requirements for food production increase from year to year, while the overuse of agrochemicals compromise soil health and agricultural sustainability. One alternative to overcome this problem is biological nitrogen fixation (BNF). Indeed, more than 60% of the fixed N on Earth results from BNF. Therefore, optimizing BNF in agriculture is more and more urgent to help meet the demand of the food production needs for the growing world population. This optimization will require a good knowledge of the diversity of nitrogen-fixing microorganisms, the mechanisms of fixation, and the selection and formulation of efficient N-fixing microorganisms as biofertilizers. Good understanding of BNF process may allow the transfer of this ability to other non-fixing microorganisms or to non-leguminous plants with high added value. This minireview covers a brief history on BNF, cycle and mechanisms of nitrogen fixation, biofertilizers market value, and use of biofertilizers in agriculture. The minireview focuses particularly on some of the most effective microbial products marketed to date, their efficiency, and success-limiting in agriculture. It also highlights opportunities and difficulties of transferring nitrogen fixation capacity in cereals.


Sign in / Sign up

Export Citation Format

Share Document