Biological Nitrogen Fixation and Root-Nodule Bacteria (Rhizobium Sp. and Bradyrhizobium Sp.) In Two Rehabilitating Sand Dune Areas Planted With Acacia Spp

1985 ◽  
Vol 33 (5) ◽  
pp. 595 ◽  
Author(s):  
YM Barnet ◽  
PC Catt ◽  
DH Hearne

This paper reports a study of biological nitrogen fixation in two sand dune regions of New South Wales where planted Acacia spp. had been used in revegetation programmes. At one location (Bridge Hill Ridge), natural regrowth had produced a complex plant community, and native legumes in addition to the planted acacias were present. The other area (Wanda Beach) was a grossly disturbed site which contained only the planted species. Symbiotic fixation in association with Australian legumes occurred at both locations at rates within the range reported by other authors. Distinct seasonal changes were apparent, with higher activities in the cooler months. The legume association seemed the only source of biologically fixed nitrogen at Bridge Hill Ridge, but at Wanda Beach cyanobacteria in an algal mat also made a contribution. Fast and slow-growing bacterial strains were obtained from root nodules of native legumes at both sites and were classed as Rhizobium sp. and Bradyrhizobium sp., respectively. This division was supported by the pattern of serological affinities of the isolates and by differences in their protein profiles demonstrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Two atypical types of root-nodule bacteria were found at Bridge Hill Ridge: non-nodulating, fast-growing isolates and an abnormally slow-growing Bradyrhizobium sp.

2019 ◽  
Vol 20 (1) ◽  
pp. 122-132 ◽  
Author(s):  
Frédérique Reverchon ◽  
Kadum M. Abdullah ◽  
Shahla Hosseini Bai ◽  
Emanuel Villafán ◽  
Timothy J. Blumfield ◽  
...  

2005 ◽  
Vol 187 (13) ◽  
pp. 4480-4487 ◽  
Author(s):  
Jonathan D. Awaya ◽  
Paul M. Fox ◽  
Dulal Borthakur

ABSTRACT Rhizobium sp. strain TAL1145 degrades the Leucaena toxin mimosine and its degradation product 3-hydroxy-4-pyridone (HP). The aim of this investigation is to characterize the Rhizobium genes for HP degradation and transport. These genes were localized by subcloning and mutagenesis on a previously isolated cosmid, pUHR263, containing mid genes of TAL1145 required for mimosine degradation. Two structural genes, pydA and pydB, encoding a metacleavage dioxygenase and a hydrolase, respectively, are required for degradation of HP, and three genes, pydC, pydD, and pydE, encoding proteins of an ABC transporter, are involved in the uptake of HP by TAL1145. These genes are induced by HP, although both pydA and pydB show low levels of expression without HP. pydA and pydB are cotranscribed, while pydC, pydD, and pydE are each transcribed from separate promoters. PydA and PydB show no homology with other dioxygenases and hydrolases in Sinorhizobium meliloti, Mesorhizobium loti, and Bradyrhizobium japonicum. Among various root nodule bacteria, the ability to degrade mimosine or HP is unique to some Leucaena-nodulating Rhizobium strains.


1957 ◽  
Vol 3 (2) ◽  
pp. 171-180 ◽  
Author(s):  
Janina Kleczkowska

Bacteriophage for clover nodule bacteria can be found on roots and nodules of all naturally grown clover plants and also in the soil surrounding the roots, but not in soil without clover plants. Alternative hosts for the phage of clover bacteria are pea bacteria, and vice versa. The bacteria and the phage are heterogeneous in the sense that only a proportion of strains of clover bacteria and of pea bacteria are susceptible to lysis by a given race of phage, and only a proportion of races of phage can lyse a given bacterial strain. There does not seem to be any association between the susceptibility of bacterial strains to lysis by phage and any other features such as antigenic structure and effectiveness in nitrogen fixation. There may be an association with avirulence, i.e. inability to infect the host plant. The behavior of phage–bacterial mixtures depends on the surrounding medium. The longevity of phage in soil or in a soil-like medium such as a vermiculite mixture is relatively short, and the effect of phage can be localized so that phage-susceptible bacteria and the phage can exist close to each other without any apparent interaction. However, as long as the phage is present, phage-resistant bacterial mutants are usually present also. The phage-resistant mutants may also be mutants in other respects such as effectiveness in nitrogen fixation. In the presence of weakened phage, bacterial mutants were found to occur that differ from the parent form in effectiveness but resemble it in susceptibility to the phage.


1964 ◽  
Vol 15 (2) ◽  
pp. 273 ◽  
Author(s):  
KC Marshall

An investigation has been made of the survival of root-nodule bacteria in autoclaved soils which, after inoculation, were dried at 30°C and subsequently exposed to higher temperatures. Rhizobium trifolii died in grey and yellow sands heated to 70° but survived in red sands and soils of heavier texture. Amendment of a grey sandy soil with 5% (w/w) of montmorillonite, illite, fly ash, or haematite protected R. trifolii from the lethal effects of exposing the dry soil to high temperatures. Kaolinite and goethite did not protect the clover root-nodule bacteria. After three successive exposures at 50° for 5 hr R. trifolii disappeared in a grey sandy soil, but still survived after four exposures in the presence of montmorillonite. The greater survival in heavy-textured soils and red sands can be attributed to the presence of appreciable amounts of illite or haematite or both in these soils, the grey and yellow sands containing only kaolinite and possibly goethite, neither being protective. Another fast-growing species of the root-nodule bacteria, R. meliloti, also failed to survive heating to 70° in a grey sandy soil. On the other hand, the slow-growing R. lupini and R. japonicum were comparatively resistant to the effects of high temperature and desiccation in the same grey sand, a fact which may explain the survival of R. lupini in certain field soils where R. trifolii fails to survive.


Author(s):  
Ishaq Z. ◽  

Biological Nitrogen fixation is one of the important aspects of organic agriculture gaining considerable attention globally. Information about the number of viable indigenous Bradyrhizobia in soils planted with legumes and their capacity to nodulate is a valuable tool in developing strategies to improve biological nitrogen fixation. Such strategies could potentially lead to increased soybean yields at low cost. This study was conducted to isolate and enumerate Bradyrizobium species dwelling in the root nodule of soybean plant using Bradyrhizobium japonicum selective medium (BJSM). Twenty (20) strains of Bradyrizobium species were isolated from the root nodules of soybean plants harvested from Ahmadu Bello University farm site, located at Bomo district of Sabongari local government area, Kaduna State, Nigeria. This was achieved using the streak method of isolation on BJSM. Ninety percent (18) of these isolates were confirmed as Bradyrizobium species using the plant infection test as they were able to nodulate the roots of soybean plants. The enumeration of the indigenous Bradyrizobium species gave a count ranging from 2.07x105 - 4.0x106 CFU/mL. Thus, the number of Bradyrhizobia obtained in the soil of this study is sufficient to achieve satisfactory results on nodulation and nitrogen fixation. Key words: Soybean, Bradyrhizobium species, Nodulation, Nitrogen fixation


2013 ◽  
Vol 49 (2) ◽  
pp. 131-136
Author(s):  
Jong-Ok Jang ◽  
Mi-Kyung Kwon ◽  
Dong-Jin Park ◽  
Chang Keun Sung ◽  
Chang-Jin Kim

Sign in / Sign up

Export Citation Format

Share Document