scholarly journals The benefits of an open-science approach in student research projects

2021 ◽  
Author(s):  
Emma MacKenzie ◽  
Sophie Winterbourne ◽  
Felicity Anderson ◽  
Edward Wallace

Open science is a movement to allow scientific information, data and outputs to be more widely accessible and reusable, with the active engagement of all the stakeholders. Open science can also describe openness within a research group where all participants share their data, analysis code, ideas and feedback. These ideas can be applied to all aspects of science, from large research consortia to student projects. With great accessibility comes greater reproducibility, leading to better code quality and better research. Here we describe what we have learned and gained from taking an open-science approach in undergraduate and masters student research projects, from the perspective of the student, the day-to-day supervisor, and the principal investigator (PI) or research group leader. We argue for the importance of clear expectations, communication, documentation, and of modelling collaborative behaviour. To design a good student project, we recommend planning the project outcomes so that everybody wins, and planning a pathway from novice to expert within the project.

F1000Research ◽  
2018 ◽  
Vol 6 ◽  
pp. 2051 ◽  
Author(s):  
Chiara Gabella ◽  
Christine Durinx ◽  
Ron Appel

Millions of life scientists across the world rely on bioinformatics data resources for their research projects. Data resources can be very expensive, especially those with a high added value as the expert-curated knowledgebases. Despite the increasing need for such highly accurate and reliable sources of scientific information, most of them do not have secured funding over the near future and often depend on short-term grants that are much shorter than their planning horizon. Additionally, they are often evaluated as research projects rather than as research infrastructure components. In this work, twelve funding models for data resources are described and applied on the case study of the Universal Protein Resource (UniProt), a key resource for protein sequences and functional information knowledge. We show that most of the models present inconsistencies with open access or equity policies, and that while some models do not allow to cover the total costs, they could potentially be used as a complementary income source. We propose the Infrastructure Model as a sustainable and equitable model for all core data resources in the life sciences. With this model, funding agencies would set aside a fixed percentage of their research grant volumes, which would subsequently be redistributed to core data resources according to well-defined selection criteria. This model, compatible with the principles of open science, is in agreement with several international initiatives such as the Human Frontiers Science Program Organisation (HFSPO) and the OECD Global Science Forum (GSF) project. Here, we have estimated that less than 1% of the total amount dedicated to research grants in the life sciences would be sufficient to cover the costs of the core data resources worldwide, including both knowledgebases and deposition databases.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 2051 ◽  
Author(s):  
Chiara Gabella ◽  
Christine Durinx ◽  
Ron Appel

Millions of life scientists across the world rely on bioinformatics data resources for their research projects. Data resources can be very expensive, especially those with a high added value as the expert-curated knowledgebases. Despite the increasing need for such highly accurate and reliable sources of scientific information, most of them do not have secured funding over the near future and often depend on short-term grants that are much shorter than their planning horizon. Additionally, they are often evaluated as research projects rather than as research infrastructure components. In this work, twelve funding models for data resources are described and applied on the case study of the Universal Protein Resource (UniProt), a key resource for protein sequences and functional information knowledge. We show that most of the models present inconsistencies with open access or equity policies, and that while some models do not allow to cover the total costs, they could potentially be used as a complementary income source. We propose the Infrastructure Model as a sustainable and equitable model for all core data resources in the life sciences. With this model, funding agencies would set aside a fixed percentage of their research grant volumes, which would subsequently be redistributed to core data resources according to well-defined selection criteria. This model, compatible with the principles of open science, is in agreement with several international initiatives such as the Human Frontiers Science Program Organisation (HFSPO) and the OECD Global Science Forum (GSF) project. Here, we have estimated that less than 1% of the total amount dedicated to research grants in the life sciences would be sufficient to cover the costs of the core data resources worldwide, including both knowledgebases and deposition databases.


2000 ◽  
Vol 17 (2) ◽  
pp. 162-167 ◽  
Author(s):  
R. P. Hollow

AbstractStudent research projects are becoming either integral or optional components of Science curricula in several countries. They provide a valuable opportunity for high school students to experience many of the joys and frustrations that make up the intellectual challenge of Science. Astronomy is one branch of Science that lends itself to student projects. Student Research Projects (SRPs) can be individual, group or collaborative between groups in other schools or countries and may involve professional mentors. Use of the Internet and remote access telescopes allow students to undertake challenging research and make worthwhile contributions to professional programs. This paper presents case studies of student projects in optical and radio astronomy from Australian and overseas schools and details both the benefits and problems faced in conducting such projects. Student responses to involvement in projects are discussed. Potential areas for future collaboration and development are highlighted together with the need for more research as to the most effective ways to implement projects and develop student skills.


Data Science ◽  
2021 ◽  
pp. 1-21
Author(s):  
Caspar J. Van Lissa ◽  
Andreas M. Brandmaier ◽  
Loek Brinkman ◽  
Anna-Lena Lamprecht ◽  
Aaron Peikert ◽  
...  

Adopting open science principles can be challenging, requiring conceptual education and training in the use of new tools. This paper introduces the Workflow for Open Reproducible Code in Science (WORCS): A step-by-step procedure that researchers can follow to make a research project open and reproducible. This workflow intends to lower the threshold for adoption of open science principles. It is based on established best practices, and can be used either in parallel to, or in absence of, top-down requirements by journals, institutions, and funding bodies. To facilitate widespread adoption, the WORCS principles have been implemented in the R package worcs, which offers an RStudio project template and utility functions for specific workflow steps. This paper introduces the conceptual workflow, discusses how it meets different standards for open science, and addresses the functionality provided by the R implementation, worcs. This paper is primarily targeted towards scholars conducting research projects in R, conducting research that involves academic prose, analysis code, and tabular data. However, the workflow is flexible enough to accommodate other scenarios, and offers a starting point for customized solutions. The source code for the R package and manuscript, and a list of examplesof WORCS projects, are available at https://github.com/cjvanlissa/worcs.


PEDIATRICS ◽  
1991 ◽  
Vol 88 (3) ◽  
pp. 661-661
Author(s):  
J. F. L.

ANCHORAGE, April 20—Sea otters rescued from waters fouled by the Exxon Valdez oil spill fared poorly after their return to the wild last fall, and scientists working under Government contract say at least half may have perished over the winter. Nearly 900 dead otters were found after the tanker spilled almost 11 million gallons of crude oil in March 1989. An additional 360 were netted alive and brought to rehabilitation centers at Valdez, Seward, Homer and Kodiak. About 200 were later returned to Prince William Sound but some scientists say that as many as half may have perished and that the rehabilitation effort has been largely futile... The withholding of scientific information on the spill for legal reasons by all the parties is becoming a major source of controversy as research projects begin to generate at least preliminary data.


2021 ◽  
pp. 1-15
Author(s):  
Jodi Schneider ◽  
Michele Avissar-Whiting ◽  
Caitlin Bakker ◽  
Hannah Heckner ◽  
Sylvain Massip ◽  
...  

Open science and preprints have invited a larger audience of readers, especially during the pandemic. Consequently, communicating the limitations and uncertainties of research to a broader public has become important over the entire information lifecycle. This paper brings together reports from the NISO Plus 2021 conference session “Misinformation and truth: from fake news to retractions to preprints”. We discuss the validation and verification of scientific information at the preprint stage in order to support sound and open science standards, at the publication stage in order to limit the spread of retracted research, and after publication, to fight fake news about health-related research by mining open access content.


Sign in / Sign up

Export Citation Format

Share Document