scholarly journals The molecular integrity of chloroplast ribosomal ribonucleic acid

1971 ◽  
Vol 123 (2) ◽  
pp. 235-243 ◽  
Author(s):  
C. J. Leaver ◽  
J. Ingle

Instability of chloroplast rRNA has been observed with essentially all chloroplast RNA preparations. This paper describes experiments that show that, under normal conditions of preparation and fractionation, only the heavy chloroplast component (mol.wt. 1.1×106) is unstable, the light chloroplast rRNA (mol.wt. 0.56×106) and the cytoplasmic rRNA species (mol.wt. 1.3×106 and 0.70×106) being stable. The stability of the 1.1×106-mol. wt. molecule varies with different plant species, as also does the size and the number of fragments produced. Cleavages in three particular regions of the molecule are very frequent within the range of tissues studied. The 1.1×106-mol.wt. rRNA is, however, stabilized by the presence of Mg2+ during the preparation and fractionation of the RNA.

1974 ◽  
Vol 141 (3) ◽  
pp. 609-615 ◽  
Author(s):  
John Shine ◽  
Lynn Dalgarno

The 3′-terminal sequence of 18S ribosomal RNA from Drosophila melanogaster and Saccharomyces cerevisiae was determined by stepwise degradation from the 3′-terminus and labelling with [3H]isoniazid. The sequence G-A-U-C-A-U-U-AOH was found at the 3′-terminus of both 18S rRNA species. Less extensive data for 18S RNA from a number of other eukaryotes are consistent with the same 3′-terminal sequence, and an identical sequence has previously been reported for the 3′-end of rabbit reticulocyte 18S rRNA (Hunt, 1970). These results suggest that the base sequence in this region is strongly conserved and may be identical in all eukaryotes. As the 3′-terminal hexanucleotide is complementary to eukaryotic terminator codons we discuss the possibility that the 3′-end of 18S rRNA may have a direct base-pairing role in the termination of protein synthesis.


Parasitology ◽  
1978 ◽  
Vol 77 (3) ◽  
pp. 345-366 ◽  
Author(s):  
F. W. Miller ◽  
Judith Ilan

SummaryRibosomes and high molecular weight ribosomal ribonucleic acid (rRNA) from the blood stages of Plasmodium berghei parasites were studied in preparations free from host ribosome contamination. Purified malarial ribosomes were isolated in high yield from a population of ultrastructurally intact, viable parasites by hypertonic lysis with Triton X-100 and differential centrifugation. These ribosomes were shown to be derived from active polysomes and could be dissociated into subunits by puromycin–0·5 m KCl treatment. Malarial rRNA extracted from purified 40S and 60S ribosomal subunits was characterized by electrophoretic, sedimentation and base ratio analyses. Like certain other protozoa, the P. berghei 40S ribosomal subunit possessed an exceptionally large RNA species (mol. wt 0·9 × 106), while RNA isolated from the parasite's 60S subunit (mol. wt 1·5 × 106) was specifically ‘nicked’ to produce one large component (mol.wt 1·2 × 106) and one small component (mol.wt 0·3 × 106) in equimolar quantities. These rRNA's migrate identically on polyacrylamide gels after heating to 63°C for 5 mm or under denaturing conditions in the presence of formamide, indicating an absence of aggregation and non-specific degradation of the rRNA species. Base composition studies showed P. berghei rRNA to be low in guanosine and cytosine content, as is the case for protozoa generally.


1976 ◽  
Vol 157 (1) ◽  
pp. 275-277 ◽  
Author(s):  
C J Leaver ◽  
M A Harmey

Ribosomes from higher-plant mitochondria contain 5S rRNA, in contrast with the mitochondrial ribosomes of animals and fungi, in which such a component has not been detected. In common with the ribosomes of prokaryotes and chloroplasts, higher-plant mitochondrial ribosomes do not appear to contain an RNA equivalent to the 5.8 S rRNA that is found in eukaryoytes hydrogen-bonded to the largest of the cytoplasmic rRNA species.


1976 ◽  
Vol 160 (3) ◽  
pp. 505-519 ◽  
Author(s):  
R A Cox ◽  
W Hirst

Mg2+ was shown to affect the conformation of rRNA over the range of 0.03-1.2M-KCl. The species studies were Escherichia coli S-rRNA and L-rRNA (the RNA moieties of the smaller and larger subribosomal particles respectively) and rabbits S-rRNA and L-rRNA. 2. The addition of Mg2+ to rRNA in reconstitution buffer (0.35M-KCl0.01M-Tris/HCl, pH7.2) at 20° C let to an increase in bihelical secondary structure through the formation of additional (mainly A-U) base-pairs (e.g. an additional approx. 58 A-U base-pairs per molecule of E. coli S-rRNA as judged by u.v. difference spectrophotometry…


Sign in / Sign up

Export Citation Format

Share Document