scholarly journals Escherichia coli alkaline phosphatase. Kinetic studies with the tetrameric enzyme

1972 ◽  
Vol 126 (5) ◽  
pp. 1081-1090 ◽  
Author(s):  
S. E. Halford ◽  
M. J. Schlesinger ◽  
H. Gutfreund

1. The stability of the tetrameric form of Escherichia coli alkaline phosphatase was examined by analytical ultracentrifugation. 2. The stopped-flow technique was used to study the hydrolysis of nitrophenyl phosphates by the alkaline phosphatase tetramer at pH7.5 and 8.3. In both cases transient product formation was observed before the steady state was attained. Both transients consisted of the liberation of 1mol of nitrophenol/2mol of enzyme subunits within the dead-time of the apparatus. The steady-state rates were identical with those observed with the dimer under the same conditions. 3. The binding of 2-hydroxy-5-nitrobenzyl phosphonate to the alkaline phosphatase tetramer was studied by the temperature-jump technique. The self-association of two dimers to form the tetramer is linked to a conformation change within the dimer. This accounts for the differences between the transient phases in the reactions of the dimer and the tetramer with substrate. 4. Addition of Pi to the alkaline phosphatase tetramer caused it to dissociate into dimers. The tetramer is unable to bind this ligand. It is suggested that the tetramer undergoes a compulsory dissociation before the completion of its first turnover with substrate. 5. On the basis of these findings a mechanism is proposed for the involvement of the alkaline phosphatase tetramer in the physiology of E. coli.

2000 ◽  
Vol 182 (3) ◽  
pp. 689-695 ◽  
Author(s):  
Martin Persson ◽  
Elisabeth Glatz ◽  
Blanka Rutberg

ABSTRACT Expression of the Bacillus subtilis glpD gene, which encodes glycerol-3-phosphate (G3P) dehydrogenase, is controlled by termination or antitermination of transcription. The untranslated leader sequence of glpD contains an inverted repeat that gives rise to a transcription terminator. In the presence of G3P, the antiterminator protein GlpP binds toglpD leader mRNA and promotes readthrough of the terminator. Certain mutations in the inverted repeat of theglpD leader result in GlpP-independent, temperature-sensitive (TS) expression of glpD. The TS phenotype is due to temperature-dependent degradation of theglpD mRNA. In the presence of GlpP, theglpD mRNA is stabilized. glpDleader-lacZ fusions were integrated into the chromosomes ofB. subtilis and Escherichia coli. Determination of steady-state levels of fusion mRNA in B. subtilis showed that the stability of the fusion mRNA is determined by theglpD leader part. Comparison of steady-state levels and half-lives of glpD leader-lacZ fusion mRNA inB. subtilis and E. coli revealed significant differences. A glpD leader-lacZ fusion transcript that was unstable in B. subtilis was considerably more stable in E. coli. GlpP, which stabilizes the transcript in B. subtilis, did not affect its stability in E. coli. Primer extension analysis showed that theglpD leader-lacZ fusion transcript is processed differently in B. subtilis and in E. coli. The dominating cleavage site in E. coli was barely detectable in B. subtilis. This site was shown to be a target ofE. coli RNase III.


2021 ◽  
Vol 9 (9) ◽  
pp. 1869
Author(s):  
Joanna Kaczorowska ◽  
Eoghan Casey ◽  
Gabriele A. Lugli ◽  
Marco Ventura ◽  
David J. Clarke ◽  
...  

Enterotoxigenic Escherichia coli (ETEC) and Shigella ssp. infections are associated with high rates of mortality, especially in infants in developing countries. Due to increasing levels of global antibiotic resistance exhibited by many pathogenic organisms, alternative strategies to combat such infections are urgently required. In this study, we evaluated the stability of five coliphages (four Myoviridae and one Siphoviridae phage) over a range of pH conditions and in simulated gastric conditions. The Myoviridae phages were stable across the range of pH 2 to 7, while the Siphoviridae phage, JK16, exhibited higher sensitivity to low pH. A composite mixture of these five phages was tested in vivo in a Galleria mellonella model. The obtained data clearly shows potential in treating E. coli infections prophylactically.


2012 ◽  
Vol 446 (2) ◽  
pp. 311-320 ◽  
Author(s):  
Anders Tryggvesson ◽  
Frida M. Ståhlberg ◽  
Axel Mogk ◽  
Kornelius Zeth ◽  
Adrian K. Clarke

The Clp protease is conserved among eubacteria and most eukaryotes, and uses ATP to drive protein substrate unfolding and translocation into a chamber of sequestered proteolytic active sites. In plant chloroplasts and cyanobacteria, the essential constitutive Clp protease consists of the Hsp100/ClpC chaperone partnering a proteolytic core of catalytic ClpP and noncatalytic ClpR subunits. In the present study, we have examined putative determinants conferring the highly specific association between ClpC and the ClpP3/R core from the model cyanobacterium Synechococcus elongatus. Two conserved sequences in the N-terminus of ClpR (tyrosine and proline motifs) and one in the N-terminus of ClpP3 (MPIG motif) were identified as being crucial for the ClpC–ClpP3/R association. These N-terminal domains also influence the stability of the ClpP3/R core complex itself. A unique C-terminal sequence was also found in plant and cyanobacterial ClpC orthologues just downstream of the P-loop region previously shown in Escherichia coli to be important for Hsp100 association to ClpP. This R motif in Synechococcus ClpC confers specificity for the ClpP3/R core and prevents association with E. coli ClpP; its removal from ClpC reverses this core specificity.


1993 ◽  
Vol 264 (5) ◽  
pp. H1402-H1410 ◽  
Author(s):  
P. Jha ◽  
H. Jacobs ◽  
D. Bose ◽  
R. Wang ◽  
J. Yang ◽  
...  

We examined whether depressed left ventricular (LV) contractility during Escherichia coli sepsis in dogs was due to a decrease in the fractional release of calcium from the sarcoplasmic reticulum (SR) or a reduction in calcium content in this organelle. To indirectly assess SR calcium availability in a right ventricular (RV) trabecular muscle preparation, we utilized functional indexes of cellular myocardial calcium metabolism, which included rapid-cooling contracture (RCC), an indicator of SR calcium content, and postrest contraction (PRC), an index of calcium availability from the release compartment of the SR. Measurements were made during steady-state stimulation at 0.5 and 1.5 Hz, during which time rest intervals of 30-240 s were periodically imposed. SR calcium availability was measured in RV trabeculae of dogs subjected to 4 h of E. coli sepsis and was compared with calcium availability measured in nonseptic dogs. We further characterized a filterable cardiodepressant substance (FCS), which has been previously shown to be associated with LV depression in this model, to determine whether it produced changes in calcium metabolism similar to those found in sepsis. The results showed that calcium availability from the SR of septic dogs was not impaired. Furthermore, FCS was found in the 10,000- to 30,000-mol wt fraction of plasma and produced changes in PRC in canine trabeculae that were similar to those produced during sepsis. We conclude that, as assessed by PRC and RCC, SR calcium content and release are not impaired in sepsis.


1971 ◽  
Vol 124 (1) ◽  
pp. 25-30 ◽  
Author(s):  
C. N. A. Trotman ◽  
C. Greenwood

Measurement of the ultraviolet circular dichroism of apo-(alkaline phosphatase) in urea solutions showed substantial denaturation in 3m-urea. A zinc-deficient mutant alkaline phosphatase behaved similarly. The stability of the enzyme in 6m-urea was followed as a function of its zinc content and was found to be dependent on the first two of the four zinc atoms bound by apoenzyme. Phosphatase activity was mostly dependent on a second pair of zinc atoms. Mn2+, Co2+, Cu2+ or Cd2+ also restored structural stability. Sedimentation-velocity and -equilibrium experiments revealed that dissociation of the dimer accompanied apoenzyme denaturation in urea concentrations of 1m or higher, without treatment with disulphide-reducing agent.


Sign in / Sign up

Export Citation Format

Share Document