scholarly journals The diurnal response of muscle and liver protein synthesis in vivo in meal-fed rats

1973 ◽  
Vol 136 (4) ◽  
pp. 935-945 ◽  
Author(s):  
P. J. Garlick ◽  
D. J. Millward ◽  
W. P. T. James

1. The rate of protein synthesis in rat tissues was measured by constant intravenous infusion of [14C]tyrosine. A modification has been developed for the method of calculating the rate of protein synthesis in individual tissues from the specific radioactivity of the free and protein-bound amino acid in tissue at the end of the infusion. This technique gives greater accuracy and allows a greater choice of labelled amino acids. The specific radioactivity of free tyrosine in plasma was used to calculate the plasma tyrosine flux, an index of the rate of protein synthesis in the whole body. 2. Young male Wistar rats were allowed access to food for only 4h in every 24h. The tyrosine flux and the rate of protein synthesis in liver and muscle at different periods of time after a single feed were estimated. 3. The tyrosine flux did not alter after feeding nor even after starvation for 48h. 4. The average fractional rate of protein synthesis in muscle was 7.2%/day, i.e. the proportion of the protein mass which is replaced each day. The rate rose after eating and declined during starvation for 48h. In addition the rate of muscle protein synthesis correlated with the growth rate of the rat. 5. In liver the average fractional rate of protein synthesis was 50%/day. There was no change in the rate after eating nor after starvation for 48h. In contrast with muscle this suggests that the changes in protein mass were accompanied by changes in the rate of protein breakdown rather than synthesis.

1984 ◽  
Vol 4 (1) ◽  
pp. 83-91 ◽  
Author(s):  
P. W. Emery ◽  
N. J. Rothwell ◽  
M. J. Stock ◽  
P. D. Winter

Chronic treatment of rats with the β2-adrenergic agonists clenbuterol and fenoterol over 16–19 d raised energy intake, expenditure, and body weight gain but did not affect fat or energy deposition, and body protein gain was increased by 50 and 18%, respectively. Both drugs increased the protein content and mitochondrial GDP-binding capacity of brown adipose tissue. Clenbuterol did not affect plasma insulin, growth hormone, or triiodothyronine levels, although insulin levels were reduced by fenoterol. Both drugs caused hypertrophy of skeletal muscle (gastrocnemius), and muscle protein synthesis in vivo (fractional rate) was elevated by 34 and 26% in clenbuterol and fenoteroltreated rats, respectively.


1981 ◽  
Vol 194 (3) ◽  
pp. 811-819 ◽  
Author(s):  
M L MacDonald ◽  
R W Swick

Rates of growth and protein turnover in the breast muscle of young chicks were measured in order to assess the roles of protein synthesis and degradation in the regulation of muscle mass. Rates of protein synthesis were measured in vivo by injecting a massive dose of L-[1-14C]valine, and rates of protein degradation were estimated as the difference between the synthesis rate and the growth rate of muscle protein. In chicks fed on a control diet for up to 7 weeks of age, the fractional rate of synthesis decreased from 1 to 2 weeks of age and then changed insignificantly from 2 to 7 weeks of age, whereas DNA activity was constant for 1 to 7 weeks. When 4-week-old chicks were fed on a protein-free diet for 17 days, the total amount of breast-muscle protein synthesized and degraded per day and the amount of protein synthesized per unit of DNA decreased. Protein was lost owing to a greater decrease in the rate of protein synthesis, as a result of the loss of RNA and a lowered RNA activity. When depleted chicks were re-fed the control diet, rapid growth was achieved by a doubling of the fractional synthesis rate by 2 days. Initially, this was a result of increased RNA activity; by 5 days, the RNA/DNA ratio also increased. There was no evidence of a decrease in the fractional degradation rate during re-feeding. These results indicate that dietary-protein depletion and repletion cause changes in breast-muscle protein mass primarily through changes in the rate of protein synthesis.


1999 ◽  
Vol 277 (4) ◽  
pp. E608-E616 ◽  
Author(s):  
L. Mosoni ◽  
T. Malmezat ◽  
M. C. Valluy ◽  
M. L. Houlier ◽  
D. Attaix ◽  
...  

Sarcopenia could result from the inability of an older individual to recover muscle lost during catabolic periods. To test this hypothesis, we compared the capacity of 5-day-refed 12- and 24-mo-old rats to recover muscle mass lost after 10 days without food. We measured gastrocnemius and liver protein synthesis with the flooding-dose method and also measured nitrogen balance, 3-methylhistidine excretion, and the gene expression of components of proteolytic pathways in muscle comparing fed, starved, and refed rats at each age. We show that 24-mo-old rats had an altered capacity to recover muscle proteins. Muscle protein synthesis, inhibited during starvation, returned to control values during refeeding in both age groups. The lower recovery in 24-mo-old rats was related to a lack of inhibition of muscle proteolysis during refeeding. The level of gene expression of components of the proteolytic pathways did not account for the variations in muscle proteolysis at both ages. In conclusion, this study highlights the role of muscle proteolysis in the lower recovery of muscle protein mass lost during catabolic periods.


1992 ◽  
Vol 262 (1) ◽  
pp. E1-E5 ◽  
Author(s):  
A. G. Baillie ◽  
P. J. Garlick

One-year-old adult female rats were fasted for 12 or 36 h followed by a 30-min infusion of insulin. The responses of the fractional rate of protein synthesis (Ks) in the individual muscles (measured in vivo) to fasting were small and mostly nonsignificant. After 12 h of fasting, only the epitrochlearis muscle (ET) showed a significant decrease in Ks, and, even after 36 h of fasting, a significant decrease in Ks was seen in only ET, extensor digitorum longus, and tensor fasciae latae (TFL). After the 36-h fast, infusion of insulin restored the fed Ks in all muscles except TFL. The fiber-type composition of the individual muscles appeared to influence the muscles' responsiveness to the fasting, since the highly glycolytic TFL was the most sensitive (particularly after 36 h of fasting), whereas the highly oxidative adductor longus and soleus muscles were unaffected by either fasting or insulin. In a second experiment, refeeding of fasted adult rats also had little effect on Ks, consistent with the low sensitivity to fasting shown by the first experiment. The parallel results in the two experiments confirmed that the low responsiveness to fasting and insulin infusion in these adult rats was not a result of failure to absorb in “fed” animals or insufficient levels of insulin during insulin infusions. In contrast, a third experiment showed that muscle protein synthesis in the gastrocnemius muscle from young adult (5-mo-old) female rats was significantly reduced after only 12 h of fasting.


1975 ◽  
Vol 26 (6) ◽  
pp. 1063
Author(s):  
LEA Symons ◽  
WO Jones

Incorporation of radioisotopically labelled L-leucine into skeletal muscle proteins was measured in vivo and in vitro, and into liver proteins in vivo in three groups of sheep: (1) infected by Trichostrongylus colubriformis, (2) uninfected, pair-fed with the infected animals, (3) uninfected, fed ad lib. Incorporation of [14C]L-leucine by an homogenate of wool follicles from infected and uninfected sheep was also measured. Incorporation of leucine by muscle, and hence muscle protein synthesis, was equally depressed in the anorexic infected sheep losing weight, and in pair-fed animals, whether measured in vivo or in vitro, or expressed in terms of either RNA or DNA. Incorporation into protein was elevated equally in vivo in the livers of the infected and pair-fed sheep when expressed in terms of content of tissue nitrogen, but not in terms of cither nucleic acid. Incorporation by the wool follicular homogenate was appreciably depressed by the infection and is consistent with the poor wool growth in nematode infections. These results show that the same depression of skeletal muscle and, possibly, elevation of liver protein synthesis occur in a ruminant as were reported earlier for laboratory monogastric animals with intestinal nematode infections. Pair-feeding uninfected animals in both this and the earlier experiments emphasized the importance of anorexia as a major cause of these effects on protein synthesis. The importance of these effects upon production is discussed briefly.


1976 ◽  
Vol 231 (4) ◽  
pp. 1018-1023 ◽  
Author(s):  
ME Harney ◽  
RW Swick ◽  
NJ Benevenga

The rate of liver and muscle protein synthesis has been measured in 27 rats after feeding L-[U-14C]tyrosine in L-amino acid diets prepared as agar gels. Constant specific activity of the free tyrosine pool, as indicated by constant excretion of 14CO2, was reached within 2 h of feeding and was maintained for the remaining 6 h of the 8-h experiment. Muscle protein synthesis was decreased (P less than 0.05) in rats fed a 0.3% methionine diet compared with rats fed this diet supplemented with 0.51% cystine (fractional rate of synthesis, ks: 0.098 vs. 0.121). No effect (P greater than 0.05) of these diets on liver protein synthesis was observed (ks: 0.603 vs. 0.532). Protein synthetic rate was also determined by the constant-intravenous infusion technique in 17 rats fed unlabeled diets. The two techniques gave similar estimates. Restraint of the rats or the infusion of saline had no measurable effect on the rate of protein synthesis in rats fed labeled diets. This feeding technique is essentially equivalent to the constant-infusion technique and offers an easier, more physiological approach to achieving a steady state.


1987 ◽  
Vol 248 (2) ◽  
pp. 439-442 ◽  
Author(s):  
P J Garlick ◽  
I Grant ◽  
R T Glennie

1. Rates of protein synthesis in liver and muscle of 100 g male rats were measured in vivo at 1 h or 4 h after injection of 2.5 mg of corticosterone and compared with those from animals given carrier medium alone. 2. In post-absorptive rats, corticosterone for 1 h had no effect on either muscle or liver protein synthesis. After 4 h there was a decrease in both tissues, but this was only statistically significant in muscle. 3. In fed rats, rates of protein synthesis were higher than those in post-absorptive animals, but the effects of corticosterone injection were similar. 4. Re-feeding of post-absorptive rats led to an increase in muscle protein synthesis after 1 h and 4 h. At 1 h this increase was not inhibited when plasma corticosterone concentrations were maintained high by injection of the hormone immediately before feeding commenced, but at 4 h there was a small inhibition. 5. It is concluded that the action of corticosterone in depressing muscle protein synthesis is time-dependent and requires longer than 1 h to develop. The failure of the hormone to alter the response to re-feeding for 1 h in post-absorptive rats suggest that corticosteroids are not important mediators of the acute stimulation of muscle protein synthesis by food intake.


1975 ◽  
Vol 26 (6) ◽  
pp. 1063
Author(s):  
LEA Symons ◽  
WO Jones

Incorporation of radioisotopically labelled L-leucine into skeletal muscle proteins was measured in vivo and in vitro, and into liver proteins in vivo in three groups of sheep: (1) infected by Trichostrongylus colubriformis, (2) uninfected, pair-fed with the infected animals, (3) uninfected, fed ad lib. Incorporation of [14C]L-leucine by an homogenate of wool follicles from infected and uninfected sheep was also measured. Incorporation of leucine by muscle, and hence muscle protein synthesis, was equally depressed in the anorexic infected sheep losing weight, and in pair-fed animals, whether measured in vivo or in vitro, or expressed in terms of either RNA or DNA. Incorporation into protein was elevated equally in vivo in the livers of the infected and pair-fed sheep when expressed in terms of content of tissue nitrogen, but not in terms of cither nucleic acid. Incorporation by the wool follicular homogenate was appreciably depressed by the infection and is consistent with the poor wool growth in nematode infections. These results show that the same depression of skeletal muscle and, possibly, elevation of liver protein synthesis occur in a ruminant as were reported earlier for laboratory monogastric animals with intestinal nematode infections. Pair-feeding uninfected animals in both this and the earlier experiments emphasized the importance of anorexia as a major cause of these effects on protein synthesis. The importance of these effects upon production is discussed briefly.


2012 ◽  
Vol 302 (1) ◽  
pp. E52-E60 ◽  
Author(s):  
Bart B. L. Groen ◽  
Peter T. Res ◽  
Bart Pennings ◽  
Elisabeth Hertle ◽  
Joan M. G. Senden ◽  
...  

The loss of skeletal muscle mass with aging has been attributed to an impaired muscle protein synthetic response to food intake. Therefore, nutritional strategies are targeted to modulate postprandial muscle protein accretion in the elderly. The purpose of this study was to assess the impact of protein administration during sleep on in vivo protein digestion and absorption kinetics and subsequent muscle protein synthesis rates in elderly men. Sixteen healthy elderly men were randomly assigned to an experiment during which they were administered a single bolus of intrinsically l-[1-13C]phenylalanine-labeled casein protein (PRO) or a placebo (PLA) during sleep. Continuous infusions with l-[ ring-2H5]phenylalanine and l-[ ring-2H2]tyrosine were applied to assess in vivo dietary protein digestion and absorption kinetics and subsequent muscle protein synthesis rates during sleep. We found that exogenous phenylalanine appearance rates increased following protein administration. The latter stimulated protein synthesis, resulting in a more positive overnight whole body protein balance (0.30 ± 0.1 vs. 11.8 ± 1.0 μmol phenylalanine·kg−1·h−1 in PLA and PRO, respectively; P < 0.05). In agreement, overnight muscle protein fractional synthesis rates were much greater in the PRO experiment (0.045 ± 0.002 vs. 0.029 ± 0.002%/h, respectively; P < 0.05) and showed abundant incorporation of the amino acids ingested via the intrinsically labeled protein (0.058 ± 0.006%/h). This is the first study to show that dietary protein administration during sleep is followed by normal digestion and absorption kinetics, thereby stimulating overnight muscle protein synthesis. Dietary protein administration during sleep stimulates muscle protein synthesis and improves overnight whole body protein balance. These findings may provide a basis for novel interventional strategies to attenuate muscle mass loss.


1986 ◽  
Vol 235 (2) ◽  
pp. 329-336 ◽  
Author(s):  
M M Jepson ◽  
J M Pell ◽  
P C Bates ◽  
D J Millward

The response of muscle and liver protein metabolism to either a single or three successive daily injections of an endotoxin (Escherichia coli lipopolysaccharide, serotype 0127 B8; 1 mg/ml, 0.3 mg/100 g body wt.) was studied in vivo in the fed rat, and at 24 and 30 h after endotoxin treatment during fasting. In the fed rats there was a catabolic response in muscle, owing to a 60-100% increase in muscle protein degradation rate, and a 52% fall in the synthesis rate. Although there was a 20% decrease in food intake, the decrease in protein synthesis was to some extent independent of this, since rats treated with endotoxin and fasted also showed a lower rate of muscle protein synthesis, which was in excess of the decrease caused by fasting alone. The mechanism of this decreased protein synthesis involved decreased translational activity, since in both fed and fasted rats there was a decreased rate of synthesis per unit of RNA. This occurred despite the fact that insulin concentrations were either maintained or increased, in the fasted rats, to those observed in fed rats. In the liver total protein mass was increased in the fed rats by 16% at 24 h, and the fractional synthesis rate at that time was increased by 35%. In rats fasted after endotoxin treatment the liver protein mass was not decreased as it was in the control fasted rats, and the fractional synthesis rate was increased by 22%. In both cases the increased synthesis rate reflected an elevated hepatic RNA concentration. The extent of this increase in hepatic protein synthesis was sufficient at one point to compensate for the fall in estimated muscle protein synthesis, so that the sum total in the two tissues was maintained.


Sign in / Sign up

Export Citation Format

Share Document