scholarly journals Short-term effects of corticosterone treatment on muscle protein synthesis in relation to the response to feeding

1987 ◽  
Vol 248 (2) ◽  
pp. 439-442 ◽  
Author(s):  
P J Garlick ◽  
I Grant ◽  
R T Glennie

1. Rates of protein synthesis in liver and muscle of 100 g male rats were measured in vivo at 1 h or 4 h after injection of 2.5 mg of corticosterone and compared with those from animals given carrier medium alone. 2. In post-absorptive rats, corticosterone for 1 h had no effect on either muscle or liver protein synthesis. After 4 h there was a decrease in both tissues, but this was only statistically significant in muscle. 3. In fed rats, rates of protein synthesis were higher than those in post-absorptive animals, but the effects of corticosterone injection were similar. 4. Re-feeding of post-absorptive rats led to an increase in muscle protein synthesis after 1 h and 4 h. At 1 h this increase was not inhibited when plasma corticosterone concentrations were maintained high by injection of the hormone immediately before feeding commenced, but at 4 h there was a small inhibition. 5. It is concluded that the action of corticosterone in depressing muscle protein synthesis is time-dependent and requires longer than 1 h to develop. The failure of the hormone to alter the response to re-feeding for 1 h in post-absorptive rats suggest that corticosteroids are not important mediators of the acute stimulation of muscle protein synthesis by food intake.

1990 ◽  
Vol 272 (1) ◽  
pp. 187-191 ◽  
Author(s):  
B G Southorn ◽  
R M Palmer ◽  
P J Garlick

The effect of corticosterone treatment on the sensitivity of muscle protein synthesis to insulin infusion was assessed in post-absorptive young rats. To select the optimal time period for corticosterone treatment, protein synthesis was measured by injection of L-[2,6-3H]phenylalanine (1.5 mmol/kg body weight) 1, 4, 12 or 24 h after injection of corticosterone (5 mg/kg body wt.). Muscle protein synthesis was significantly decreased at 4 h and the effect was maximal by 12 h; liver protein synthesis was elevated at 12 h and 24 h. The dose-response of muscle protein synthesis to a 30 min infusion with 0-150 munits of insulin/h was then compared in rats pretreated with corticosterone (10 mg/100 g body wt.) or vehicle alone. When no insulin was infused, corticosterone inhibited protein synthesis in gastrocnemius muscle. High doses of insulin stimulated protein synthesis, but the inhibition by corticosterone was similar to that in the absence of insulin. At intermediate doses of insulin there was an increased requirement for insulin to elicit an equivalent response in muscle protein synthesis. Plantaris muscle responded in a manner similar to that of gastrocnemius, but neither soleus muscle nor liver responded significantly to insulin. These data suggest that corticosterone has two modes of action; one which is independent from and opposite to that of insulin, and a second which causes insulin-resistance through a decrease in sensitivity rather than a change in responsiveness.


1975 ◽  
Vol 26 (6) ◽  
pp. 1063
Author(s):  
LEA Symons ◽  
WO Jones

Incorporation of radioisotopically labelled L-leucine into skeletal muscle proteins was measured in vivo and in vitro, and into liver proteins in vivo in three groups of sheep: (1) infected by Trichostrongylus colubriformis, (2) uninfected, pair-fed with the infected animals, (3) uninfected, fed ad lib. Incorporation of [14C]L-leucine by an homogenate of wool follicles from infected and uninfected sheep was also measured. Incorporation of leucine by muscle, and hence muscle protein synthesis, was equally depressed in the anorexic infected sheep losing weight, and in pair-fed animals, whether measured in vivo or in vitro, or expressed in terms of either RNA or DNA. Incorporation into protein was elevated equally in vivo in the livers of the infected and pair-fed sheep when expressed in terms of content of tissue nitrogen, but not in terms of cither nucleic acid. Incorporation by the wool follicular homogenate was appreciably depressed by the infection and is consistent with the poor wool growth in nematode infections. These results show that the same depression of skeletal muscle and, possibly, elevation of liver protein synthesis occur in a ruminant as were reported earlier for laboratory monogastric animals with intestinal nematode infections. Pair-feeding uninfected animals in both this and the earlier experiments emphasized the importance of anorexia as a major cause of these effects on protein synthesis. The importance of these effects upon production is discussed briefly.


1975 ◽  
Vol 26 (6) ◽  
pp. 1063
Author(s):  
LEA Symons ◽  
WO Jones

Incorporation of radioisotopically labelled L-leucine into skeletal muscle proteins was measured in vivo and in vitro, and into liver proteins in vivo in three groups of sheep: (1) infected by Trichostrongylus colubriformis, (2) uninfected, pair-fed with the infected animals, (3) uninfected, fed ad lib. Incorporation of [14C]L-leucine by an homogenate of wool follicles from infected and uninfected sheep was also measured. Incorporation of leucine by muscle, and hence muscle protein synthesis, was equally depressed in the anorexic infected sheep losing weight, and in pair-fed animals, whether measured in vivo or in vitro, or expressed in terms of either RNA or DNA. Incorporation into protein was elevated equally in vivo in the livers of the infected and pair-fed sheep when expressed in terms of content of tissue nitrogen, but not in terms of cither nucleic acid. Incorporation by the wool follicular homogenate was appreciably depressed by the infection and is consistent with the poor wool growth in nematode infections. These results show that the same depression of skeletal muscle and, possibly, elevation of liver protein synthesis occur in a ruminant as were reported earlier for laboratory monogastric animals with intestinal nematode infections. Pair-feeding uninfected animals in both this and the earlier experiments emphasized the importance of anorexia as a major cause of these effects on protein synthesis. The importance of these effects upon production is discussed briefly.


1993 ◽  
Vol 264 (4) ◽  
pp. E614-E620 ◽  
Author(s):  
L. Mosoni ◽  
M. L. Houlier ◽  
P. P. Mirand ◽  
G. Bayle ◽  
J. Grizard

This study was carried out to analyze age-related changes on amino acid and insulin effects on muscle and liver protein synthesis. Conscious male rats, aged 12 (adult) and 24 (old) mo, were infused for 90 min with either saline, amino acids, or amino acids with insulin and glucose. Protein synthesis was measured during the last 15 min of infusion (flooding dose of valine with L-[2,3,4-3H]valine). Gastrocnemius protein mass was 29% lower in old rats than in adults. However, basal muscle absolute synthesis rates were unchanged with age, and fractional synthesis rates (FSR) were increased. Amino acids significantly stimulated muscle FSR to a similar extent (18-20%) in adult (P < 0.01) and old rats (P = 0.03 when variability introduced by muscle atrophy was taken into account by a variance-covariance analysis). Insulin did not elicit any additional effect. Liver protein synthesis did not change with age or in response to infusions. We conclude that, despite an age-related loss of muscle proteins, capacity of muscle protein synthesis to be stimulated is preserved with age.


1985 ◽  
Vol 228 (3) ◽  
pp. 575-581 ◽  
Author(s):  
V R Preedy ◽  
P J Garlick

Infusion of glucagon (0.5 mg/h per 100 g body wt.) into fed rats for 6 h inhibited protein synthesis in skeletal muscle, but not in heart. The order of sensitivity of three muscles was plantaris greater than gastrocnemius greater than soleus. Treatment with glucagon for periods of 1 h or less had no effect. Liver protein synthesis was inhibited by glucagon treatment for 10 min, but stimulated after 6 h. The effect of glucagon on muscle was not secondary to impaired food absorption or to depletion of amino acids by increased gluconeogenesis, since the inhibition of protein synthesis was observed in postabsorptive and amino acid-infused rats. The failure of glucagon to inhibit muscle protein synthesis after 1 h may have been caused by the increase in plasma insulin that occurred at this time, since an inhibition was detected in insulin-treated diabetic rats. The lowest infusion rate that gave a significant decrease in muscle protein synthesis was 6 micrograms/h per 100 g body wt., despite a small increase in plasma insulin. This gave plasma glucagon concentrations in the high pathophysiological range, suggesting that glucagon may be significant in the pathogenesis of muscle wasting in metabolic stresses such as diabetes and starvation.


2001 ◽  
Vol 101 (3) ◽  
pp. 295-304 ◽  
Author(s):  
Michael J. O'LEARY ◽  
Colin N. FERGUSON ◽  
Michael J. RENNIE ◽  
Charles J. HINDS ◽  
John H. COAKLEY ◽  
...  

We have investigated sequential changes in skeletal muscle and hepatic protein synthesis following sepsis, and their relationship to changes in circulating and tissue glutamine concentrations. Male Wistar rats underwent caecal ligation and puncture (CLP) or sham operation, with starvation, and were killed 24, 72 or 96 h later. A group of non-operated animals were killed at the time of surgery. Protein synthesis was determined using a flooding dose of l-[4-3H] phenylalanine, and glutamine concentrations were measured by an enzymic fluorimetric assay. Protein synthesis in gastrocnemius muscle fell in all groups. Gastrocnemius total protein content was reduced after CLP and at 72 and 96 h after sham operation. After CLP, protein synthesis was lower at 24 h, and total protein content was lower at 72 and 96 h, than in sham-operated animals. CLP was associated with increased liver protein synthesis at all time points, whereas there was no change after sham operation. Liver protein content did not change after CLP, but was lower at 72 and 96 h after sham operation than in non-operated animals. Plasma glutamine concentrations were reduced at 24 h after sham operation, and at 72 and 96 h after CLP. Muscle glutamine concentrations were reduced in all groups, with the decrease being greater following CLP than after sham operation. In the liver, glutamine concentrations were unchanged after CLP, but increased after sham operation. In rats with sepsis, decreases in muscle protein synthesis and content are associated with markedly reduced muscle glutamine concentrations. Plasma glutamine concentrations are initially maintained, but fall later. In liver, protein synthesis is increased, while glutamine concentrations are preserved. These results support a peripheral-to-splanchnic glutamine flux in sepsis.


1976 ◽  
Vol 230 (5) ◽  
pp. 1321-1325 ◽  
Author(s):  
TP Stein ◽  
JC Oram-Smith ◽  
MJ Leskiw ◽  
HW Wallace ◽  
LC Long ◽  
...  

The effect of a deficiency of calories and/or nitrogen on protein metabolism in the rat was investigated. During the 5 days of the study, the rats received all nutrients except water via intravenous hyperalimentation. Four diets were used: I) 1.25 g amino acids, 12.5 g glucose/day; II) 1.25 g amino acids/day; III) 1.25 g glucose/day; and IV) 12.5 glucose/day. The rate of protein synthesis in heart, lung, muscle, kidney, and liver was estimated by a modification of the technique of Garlick et al. (The diurnal response of muscles and liver protein synthesis in vivo in meal-fed rats. Biochem. J. 136: 935-945, 1973) except that [15N]glycine was used as the tracer. Heart and lung protein synthesis was depressed by both caloric and nitrogen restriction. Muscle protein synthesis was only significantly affected by omission of calories from the diet. Kidney nitrogen content increased with the amino acid diets and decreased with the nitrogen-deficient diets. The major response of the liver to a dietary deficiency was to lose nitrogen via an increase in the rate of liver protein catabolism.


1973 ◽  
Vol 136 (4) ◽  
pp. 935-945 ◽  
Author(s):  
P. J. Garlick ◽  
D. J. Millward ◽  
W. P. T. James

1. The rate of protein synthesis in rat tissues was measured by constant intravenous infusion of [14C]tyrosine. A modification has been developed for the method of calculating the rate of protein synthesis in individual tissues from the specific radioactivity of the free and protein-bound amino acid in tissue at the end of the infusion. This technique gives greater accuracy and allows a greater choice of labelled amino acids. The specific radioactivity of free tyrosine in plasma was used to calculate the plasma tyrosine flux, an index of the rate of protein synthesis in the whole body. 2. Young male Wistar rats were allowed access to food for only 4h in every 24h. The tyrosine flux and the rate of protein synthesis in liver and muscle at different periods of time after a single feed were estimated. 3. The tyrosine flux did not alter after feeding nor even after starvation for 48h. 4. The average fractional rate of protein synthesis in muscle was 7.2%/day, i.e. the proportion of the protein mass which is replaced each day. The rate rose after eating and declined during starvation for 48h. In addition the rate of muscle protein synthesis correlated with the growth rate of the rat. 5. In liver the average fractional rate of protein synthesis was 50%/day. There was no change in the rate after eating nor after starvation for 48h. In contrast with muscle this suggests that the changes in protein mass were accompanied by changes in the rate of protein breakdown rather than synthesis.


2008 ◽  
Vol 294 (6) ◽  
pp. R1777-R1789 ◽  
Author(s):  
Thomas C. Vary ◽  
Robert A. Frost ◽  
Charles H. Lang

Acute alcohol intoxication decreases muscle protein synthesis, but there is a paucity of data on the ability of alcohol to regulate muscle protein degradation. Furthermore, various types of atrophic stimuli appear to regulate ubiquitin-proteasome-dependent proteolysis by increasing the muscle-specific E3 ligases atrogin-1 and MuRF1 (i.e., “atrogenes”). Therefore, the present study was designed to test the hypothesis that acute alcohol intoxication increases atrogene expression leading to an elevated rate of muscle protein breakdown. In male rats, the intraperitoneal injection of alcohol dose- and time-dependently increased atrogin-1 and MuRF1 mRNA in gastrocnemius, the latter of which was most pronounced. A comparable change was absent in the soleus and heart. The ability of in vivo-administered ethanol to increase atrogene expression was independent of the route of alcohol administration (intraperitoneal vs. oral), as well as of nutritional status (fed vs. fasted) and gender (male vs. female). The increase in atrogin-1 and MuRF1 was independent of alcohol metabolism, and the overproduction of endogenous glucocorticoids and could not be prevented by maintaining the circulating concentration of insulin-like growth factor-I. Despite marked changes in atrogene expression, acute alcohol in vivo did not alter the release of either 3-methylhistidine (MH) or tyrosine from the isolated perfused hindlimb, suggesting that the rate of muscle proteolysis remains unchanged. Moreover, alcohol did not increase the directly determined rate of protein degradation in isolated epitrochlearis muscles or cultured myocytes. Finally, no increase in atrogene expression or 3-MH release was detected in muscle from rats fed an alcohol-containing diet. Our results indicate that although acute alcohol intoxication increases atrogin-1 and MuRF1 mRNA preferentially in fast-twitch skeletal muscle, this change was not associated with increased rates of muscle proteolysis. Therefore, the loss of muscle mass/protein in response to chronic alcohol abuse appears to result primarily from a decrement in muscle protein synthesis, not an increase in degradation.


1984 ◽  
Vol 4 (1) ◽  
pp. 83-91 ◽  
Author(s):  
P. W. Emery ◽  
N. J. Rothwell ◽  
M. J. Stock ◽  
P. D. Winter

Chronic treatment of rats with the β2-adrenergic agonists clenbuterol and fenoterol over 16–19 d raised energy intake, expenditure, and body weight gain but did not affect fat or energy deposition, and body protein gain was increased by 50 and 18%, respectively. Both drugs increased the protein content and mitochondrial GDP-binding capacity of brown adipose tissue. Clenbuterol did not affect plasma insulin, growth hormone, or triiodothyronine levels, although insulin levels were reduced by fenoterol. Both drugs caused hypertrophy of skeletal muscle (gastrocnemius), and muscle protein synthesis in vivo (fractional rate) was elevated by 34 and 26% in clenbuterol and fenoteroltreated rats, respectively.


Sign in / Sign up

Export Citation Format

Share Document