scholarly journals Amino acid sequence of the smaller basic protein from rat brain myelin

1974 ◽  
Vol 141 (1) ◽  
pp. 243-255 ◽  
Author(s):  
Peter R. Dunkley ◽  
Patrick R. Carnegie

1. The complete amino acid sequence of the smaller basic protein from rat brain myelin was determined. This protein differs from myelin basic proteins of other species in having a deletion of a polypeptide of 40 amino acid residues from the centre of the molecule. 2. A detailed comparison is made of the constant and variable regions in a group of myelin basic proteins from six species. 3. An arginine residue in the rat protein was found to be partially methylated. The ratio of methylated to unmethylated arginine at this position differed from that found for the human basic protein. 4. Three tryptic peptides were isolated in more than one form. The differences between the two forms of each peptide are discussed in relation to the electrophoretic heterogeneity of myelin basic proteins, which is known to occur at alkaline pH values. 5. Detailed evidence for the amino acid sequence of the protein has been deposited as Supplementary Publication SUP 50029 at the British Library (Lending Division) (formerly the National Lending Library for Science and Technology), Boston Spa, Yorks. LS23 7BQ, U.K., from whom copies may be obtained on the terms given in Biochem. J. (1973) 131, 5.

1975 ◽  
Vol 145 (2) ◽  
pp. 353-360 ◽  
Author(s):  
S Sato ◽  
T Uchida

1. RNAase (ribonuclease) U2, a purine-specific RNAase, was reduced, aminoethylated and hydrolysed with trypsin, chymotrypsin and thermolysin. On the basis of the analyses of the resulting peptides, the complete amino acid sequence of RNAase U2 was determined, 2. When the sequence was compared with the amino acid sequence of RNAase T1 (EC 3.1.4.8), the following regions were found to be similar in the two enzymes; Tyr-Pro-His-Gln-Tyr (38-42) in RNAase U2 and Tyr-Pro-His-Lys-Tyr (38-42) in RNAase T1, Glu-Phe-Pro-Leu-Val (61-65) in RNAase U2 and Glu-Trp-Pro-Ile-Leu (58-62) in RNAase T1, Asp-Arg-Val-Ile-Tyr-Gln (83-88) in RNAase U2 and Asp-Arg-Val-Phe-Asn (76-81) in RNAase T1 and Val-Thr-His-Thr-Gly-Ala (98-103) in RNAase U2 and Ile-Thr-His-Thr-Gly-Ala (90-95) in RNAase T1. All of the amino acid residues, histidine-40, glutamate-58, arginine-77 and histidine-92, which were found to play a crucial role in the biological activity of RNAase T1, were included in the regions cited here. 3. Detailed evidence for the amino acid sequence of the sequence of the proteins has been deposited as Supplementary Publication SUP 50041 (33 PAGES) AT THE British Library (Lending Division)(formerly the National Lending Library for Science and Technology), Boston Spa, Yorks. LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1975), 145, 5.


1976 ◽  
Vol 54 (10) ◽  
pp. 835-842 ◽  
Author(s):  
A. S. Mak ◽  
B. L. Jones

The complete amino acid sequence of β-purothionin, a low molecular weight, very basic, protein isolated from wheat endosperm material, has been determined. β-purothionin is toxic to some bacteria, to yeasts, and to animals when injected. The protein contains 45 amino acid residues and has a molecular weight of 4913. The 8 cysteine and 10 basic residues are distributed throughout the molecule. The primary structure of the protein shows considerable homology to those of the viscotoxins, which are toxic, small, basic proteins found in the leaves and stems of European mistletoe (Viscum album L.).


1975 ◽  
Vol 145 (2) ◽  
pp. 335-344 ◽  
Author(s):  
P H Corran ◽  
S G Waley

The amino acid sequence of rabbit muscle triose phosphate isomerase was deduced by characterizing peptides that overlap the tryptic peptides. Thiol groups were modified by oxidation, carboxymethylation or aminoen. About 50 peptides that provided information about overlaps were isolated; the peptides were mostly characterized by their compositions and N-terminal residues. The peptide chains contain 248 amino acid residues, and no evidence for dissimilarity of the two subunits that comprise the native enzyme was found. The sequence of the rabbit muscle enzyme may be compared with that of the coelacanth enzyme (Kolb et al., 1974): 84% of the residues are in identical positions. Similarly, comparison of the sequence with that inferred for the chicken enzyme (Furth et al., 1974) shows that 87% of the residues are in identical positions. Limited though these comparisons are, they suggest that triose phosphate isomerase has one of the lowest rates of evolutionary change. An extended version of the present paper has been deposited as Supplementary Publication SUP 50040 (42 pages) at the British Library (Lending Division) (formerly the National Lending Library for Science and Technology), Boston Spa, Yorks. LS23 7BQ, U.K., from whom copies can be obtained on the terms given in Biochem. J. (1975) 145, 5.


1981 ◽  
Vol 195 (3) ◽  
pp. 561-572 ◽  
Author(s):  
K Sletten ◽  
J B Natvig ◽  
G Husby ◽  
J Juul

The amino acid sequence of an amyloid-fibril protein of immunoglobulin light-chain type (AL) was elucidated. The sequence determination involved digesting the protein with trypsin, thermolysin and pepsin. The protein was found to consist of 154 amino acid residues and is thus missing about half of the constant region of a light chain. A certain heterogeneity in the length of the polypeptide was observed in the C-terminal region. The amino acid sequence from CDR (complementary-determining region) 1 and FR (framework region) 3 indicated an oligoclonal origin of the protein. By comparing the primary structure of protein AR with other lambda- and even kappa-chains, it was revealed that protein AR had an insertion of two residues of aspartic acid, namely residues 68 and 69, which has not been reported previously in light chains. The overall sequence homology in the variable region showed that protein AR is more similar to V lambda V than to the other subgroups [Kabat, Wu & Bilofsky (1979) Variable regions of Immunoglobulin Chains, Medical Computer Systems, Bolt, Beranek and Newman, Cambridge, MA].


1990 ◽  
Vol 266 (1) ◽  
pp. 75-81 ◽  
Author(s):  
D C Watson ◽  
M Yaguchi ◽  
K R Lynn

Chymopapain is a polypeptide of 218 amino acid residues. It has considerable structural similarity with papain and papaya proteinase omega, including conservation of the catalytic site and of the disulphide bonding. Chymopapain is like papaya proteinase omega in carrying four extra residues between papain positions 168 and 169, but differs from both papaya proteinases in the composition of its S2 subsite, as well as in having a second thiol group, Cys-117. Some evidence for the amino acid sequence of chymopapain has been deposited as Supplementary Publication SUP 50153 (12 pages) at the British Library Document Supply Centre, Boston Spa., Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies may be obtained on the terms indicated in Biochem. J. (1990) 265, 5. The information comprises Supplement Tables 1-4, which contain, in order, amino acid compositions of peptides from tryptic, peptic, CNBr and mild acid cleavages, Supplement Fig. 1, showing re-fractionation of selected peaks from Fig. 2 of the main paper. Supplement Fig. 2, showing cation-exchange chromatography of the earliest-eluted peak of Fig. 3 of the main paper, Supplement Fig. 3, showing reverse-phase h.p.l.c. of the later-eluted peak from Fig. 3 of the main paper, and Supplement Fig. 4, showing the separation of peptides after mild acid hydrolysis of CNBr-cleavage fragment CB3.


1975 ◽  
Vol 149 (2) ◽  
pp. 493-496 ◽  
Author(s):  
J M Wilkinson ◽  
R J A. Grand

The complete amino acid sequence of rabbit skeletal muscle troponin I was determined by the isolation of the cyanogen bromide fragments and the tryptic methionine-containing peptides. Troponin I contains 179 amino acid residues and has a molecular weight of 20864. Its N-terminus is acetylated. Detailed evidence on which the sequence is based has been deposited as Supplementary Publication SUP 50055 (23 pages) at the British Library (Lending Division), Boston Spa, Wetherby, West Yorkshire LS23 7QB, U.K., from whom copies may be obtained on the terms given in Biochem. J. (1975) 145, 5.


1974 ◽  
Vol 143 (3) ◽  
pp. 691-701 ◽  
Author(s):  
P. R. Milne ◽  
J. R. E. Wells ◽  
R. P. Ambler

The amino acid sequence of the plastocyanin from French bean (Phaseolus vulgaris) was determined. The protein consists of a single polypeptide chain of 99 residues, and the sequence was determined by characterization of CNBr, tryptic, chymotryptic and thermolysin peptides. When the sequence is compared with that from the plastocyanin of the unicellular green alga Chlorella fusca, the French-bean protein shows the deletion of the N-terminal residue, a two residue insertion and 53 identical residues. Detailed evidence for the sequence of the protein has been deposited as Supplementary Publication SUP 50037 (16pp., 1 microfiche) at the British Library (Lending Division) (formerly the National Lending Library for Science and Technology), Boston Spa, Yorks. LS23 7BQ, U.K., from whom copies may be obtained on the terms given in Biochem. J. (1973) 131, 5.


1983 ◽  
Vol 213 (1) ◽  
pp. 31-38 ◽  
Author(s):  
N Tamiya ◽  
N Maeda ◽  
H G Cogger

The main neurotoxic components, toxins Hydrophis ornatus a and Hydrophis lapemoides a, were isolated from the venoms of the sea snakes Hydrophis ornatus and Hydrophis lapemoides respectively. The amino acid sequence of toxin Hydrophis ornatus a was deduced to be identical with that of toxin Astrotia stokesii a [Maeda & Tamiya (1978) Biochem. J. 175, 507-517] on the basis of identity of the tryptic peptide ‘map’ and the amino acid composition of each peptide. The amino acid sequence of toxin Hydrophis lapemoides a was determined mainly on the basis of identity of the amino acid compositions, mobilities on paper electrophoresis and migration positions on paper chromatography of the tryptic peptides with those of other sea-snake toxins whose sequences are known. Both toxins Hydrophis ornatus a and Hydrophis lapemoides a consisted of 60 amino acid residues and there were six amino acid replacements between them. The taxonomy of sea snakes in the Hydrophis ornatus complex has long been confused, and the above snakes were originally assigned to taxa that proved to be inconsistent with the relationships indicated by the neurotoxin amino acid sequences obtained. A subsequent re-examination of the specimens revealed an error in the original identifications and demonstrated the value of the protein amino acid sequences in systematic and phylogenetic studies. The isolation procedure and results of amino acid analysis of the tryptic peptides have been deposited as Supplementary Publication SUP 50121 (8 pages) with the British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies may be obtained as indicated in Biochem. J. (1983) 209, 5.


1982 ◽  
Vol 201 (1) ◽  
pp. 39-47 ◽  
Author(s):  
Harish C. Agrawal ◽  
Keith O'Connell ◽  
Charlotte L. Randle ◽  
Daya Agrawal

When rat brain myelin was examined by sodium dodecyl sulphate/polyacrylamideslab-gel electrophoresis followed by fluorography of the stained gel, it was found that a host of proteins of rat brain myelin were labelled 2, 4 and 24h after the intracerebral injection of H332PO4. Among those labelled were proteins migrating to the positions of myelin-associated glycoprotein, Wolfgram proteins, proteolipid protein, DM-20 and basic proteins. The four basic proteins with mol.wts. 21000, 18000 (large basic protein), 17000 and 14000 (small basic protein) were shown to be phosphorylated after electrophoresis in both acid-urea- and sodium dodecyl sulphate-containing gel systems followed by fluorography. The four basic proteins imparted bluish-green colour, after staining with Amido Black, which is characteristic of myelin basic proteins. The four basic proteins were purified to homogeneity. Fluorography of the purified basic proteins after re-electrophoresis revealed the presence of phosphorylated high-molecular-weight ‘polymers’ associated with each basic protein. The amino acid compositions of the phosphorylated large basic protein and small basic proteins are compatible with the amino acid sequences. Proteins with mol.wts. 21000 and 17000 gave the expected amino acid composition of myelin basic proteins. Radiolabelled phosphoserine and phosphothreonine were identified after partial acid hydrolysis of the four purified basic proteins. The [32P]phosphate–protein bond in the basic protein was stable at an acidic pH but was readily hydrolysed at alkaline pH, as would be expected of phosphoester bonds involving both serine and threonine residues. Double-immunodiffusion analysis demonstrated that the four phosphorylated proteins showed complete homology when diffused against antiserum to a mixture of small and large basic proteins. Since the four basic proteins of rat brain myelin were phosphorylated both in vivo and in vitro it is postulated that the same protein kinase is responsible for their phosphorylation in both conditions.


1974 ◽  
Vol 143 (3) ◽  
pp. 681-690 ◽  
Author(s):  
Janice Kelly ◽  
R. P. Ambler

The amino acid sequence of the plastocyanin from the green alga Chlorella fusca was determined. The protein consists of a single polypeptide chain of 98 residues, and was determined by characterization of chymotryptic and thermolysin peptides. The amino acid sequence shows considerable similarity to that of higher plant plastocyanins. The protein contains a single cysteine, and the sequence in the vicinity of this residue is similar to that around the cysteine residue of bacterial azurins. The plastocyanin contains some uncharacterized carbohydrate. Detailed evidence for the sequence of the protein has been deposited as Supplementary Publication SUP 50 036 (17pp., 1 microfiche) at the British Library (Lending Division) (formerly the National Lending Library for Science and Technology), Boston Spa, Yorks. LS23 7BQ, U.K., from whom copies may be obtained on the terms given in Biochem. J. (1973) 131, 5.


Sign in / Sign up

Export Citation Format

Share Document