scholarly journals Phosphorylation in vivo of four basic proteins of rat brain myelin

1982 ◽  
Vol 201 (1) ◽  
pp. 39-47 ◽  
Author(s):  
Harish C. Agrawal ◽  
Keith O'Connell ◽  
Charlotte L. Randle ◽  
Daya Agrawal

When rat brain myelin was examined by sodium dodecyl sulphate/polyacrylamideslab-gel electrophoresis followed by fluorography of the stained gel, it was found that a host of proteins of rat brain myelin were labelled 2, 4 and 24h after the intracerebral injection of H332PO4. Among those labelled were proteins migrating to the positions of myelin-associated glycoprotein, Wolfgram proteins, proteolipid protein, DM-20 and basic proteins. The four basic proteins with mol.wts. 21000, 18000 (large basic protein), 17000 and 14000 (small basic protein) were shown to be phosphorylated after electrophoresis in both acid-urea- and sodium dodecyl sulphate-containing gel systems followed by fluorography. The four basic proteins imparted bluish-green colour, after staining with Amido Black, which is characteristic of myelin basic proteins. The four basic proteins were purified to homogeneity. Fluorography of the purified basic proteins after re-electrophoresis revealed the presence of phosphorylated high-molecular-weight ‘polymers’ associated with each basic protein. The amino acid compositions of the phosphorylated large basic protein and small basic proteins are compatible with the amino acid sequences. Proteins with mol.wts. 21000 and 17000 gave the expected amino acid composition of myelin basic proteins. Radiolabelled phosphoserine and phosphothreonine were identified after partial acid hydrolysis of the four purified basic proteins. The [32P]phosphate–protein bond in the basic protein was stable at an acidic pH but was readily hydrolysed at alkaline pH, as would be expected of phosphoester bonds involving both serine and threonine residues. Double-immunodiffusion analysis demonstrated that the four phosphorylated proteins showed complete homology when diffused against antiserum to a mixture of small and large basic proteins. Since the four basic proteins of rat brain myelin were phosphorylated both in vivo and in vitro it is postulated that the same protein kinase is responsible for their phosphorylation in both conditions.

1976 ◽  
Vol 155 (1) ◽  
pp. 5-17 ◽  
Author(s):  
K B M Reid

1. Digestion of human subcomponent C1q with pepsin at pH4.45 for 20h at 37 degrees C fragmented most of the non-collagen-like amino acid sequences in the molecule to small peptides, whereas the entire regions of collagen-like sequence that comprised 38% by weight of the subcomponent C1q were left intact. 2. The collagen-like fraction of the digest was eluted in the void volume of a Sephadex G-200 column, was was showm to be composed of two major fragments when examined by electrophoresis on polyacrylamide gels run in buffers containing sodium dodecyl sulphate. These fragments were separated on CM-cellulose at pH4.9 in buffers containing 7.5M-urea. 3. Human subcomponent C1q on reduction and alkylation yields equimolar amounnts of three chains, which have been designated A, B and C [Reid et al. (1972) Biochem. J. 130, 749-763]. One of the pepsin fragments was shown to be composed of the N-terminal 95 residues of the A chain linked, via residue A4, by a single disulphide bond to a residue in the sequence B2-B6 in the N-terminal 91 residues of the B chain. The second pepsin fragment was shown to be composed of a disulphide-linked dimer of the N-terminal 94 residues of the C chain, the only disulphide bond being located at residue C4.4. The mol. wts. of the unoxidized and oxidized pepsin fragments were estimated from their amino acid compositions to be 20 000 and 18 200 for the A-B and C-C dimers and 11 400, 8800 and 9600 for the collagen-like fragments of the A, B and C chains respectively. Estimation of the molecular weights of the peptic fragments by polyacrylamide-gel electrophoresis run in the presence of sodium dodecyl sulphate gave values that were approx. 50% higher than expected from the amino acid sequence data. This is probably due to the high collagen-like sequence content of these fragments.


1987 ◽  
Vol 65 (4) ◽  
pp. 354-362 ◽  
Author(s):  
Byron Lane ◽  
Zbyszko Grzelczak ◽  
Theresa Kennedy ◽  
Choy Hew ◽  
Shashikant Joshi

(1) A rapid method (2–3 weeks) is described for preparing milligram amounts of germin, in high yield, from kilogram quantities of germinated wheat embryos. An ammonium-sulphate fraction of proteins in the low-speed supernatant from an embryo homogenate is suspended in buffer for pepsin digestion, and the resulting digest is filtered through Ultrogel AcA34 to obtain germin, virtually free of contamination (<1%) by other proteins.(2) An acid hydrolysate of germin contains a full complement of the 20 different amino acids. The proportions of half-cystine, tyrosine, and tryptophan are conspicuously low (<1.5%), the proportions of aspartic acid and glycine (each ca. 11%) as well as proline (ca. 8%) are relatively high, and the cumulative proportion of hydrophobic amino acids (valine, leucine, isoleucine, phenylalanine) is also high (ca. 25%). The N-terminal sequence of germin, as determined by Edman degradation, is enriched with respect to aspartic acid, which occupies 5 of the first 15 positions.(3) There are two forms of germin, one (G) being the dominant species in the soluble fraction of homogenates of germinated embryos and the other (G′) being the dominant species in a fraction obtained by rinsing growing embryos. Consistent differences between the amino-acid compositions of G and G′ were not observed. Similarly, wherever identification was possible, the N-terminal amino-acid sequences (residues 1–22) of G and G′ were not different.(4) The polymeric and monomeric forms of germin (G or G′) give a positive Schiff reaction, characteristic of glycoproteins, when electrophoretically separated in sodium dodecyl sulphate (SDS) – poly aerylamide. Treatment with trifluoromethanesulfonic acid affirmed the glycoprotein character of germin, as did labeling, in vivo, from exogeneously supplied tritiated sugars.(5) The G and G′ forms of germin were among the most heavily labeled proteins seen in SDS–polyacrylamide separations if wheat-embryo proteins were labeled, in vivo, from exogenous supplies of tritiated mannose, glucosamine, or fucose. Differences between the patterns of glucosamine labeling and fucose labeling of G and G′ suggest the possibility that the two forms differ with respect to their carbohydrate components.


1974 ◽  
Vol 141 (1) ◽  
pp. 243-255 ◽  
Author(s):  
Peter R. Dunkley ◽  
Patrick R. Carnegie

1. The complete amino acid sequence of the smaller basic protein from rat brain myelin was determined. This protein differs from myelin basic proteins of other species in having a deletion of a polypeptide of 40 amino acid residues from the centre of the molecule. 2. A detailed comparison is made of the constant and variable regions in a group of myelin basic proteins from six species. 3. An arginine residue in the rat protein was found to be partially methylated. The ratio of methylated to unmethylated arginine at this position differed from that found for the human basic protein. 4. Three tryptic peptides were isolated in more than one form. The differences between the two forms of each peptide are discussed in relation to the electrophoretic heterogeneity of myelin basic proteins, which is known to occur at alkaline pH values. 5. Detailed evidence for the amino acid sequence of the protein has been deposited as Supplementary Publication SUP 50029 at the British Library (Lending Division) (formerly the National Lending Library for Science and Technology), Boston Spa, Yorks. LS23 7BQ, U.K., from whom copies may be obtained on the terms given in Biochem. J. (1973) 131, 5.


1973 ◽  
Vol 135 (1) ◽  
pp. 151-164 ◽  
Author(s):  
W. T. Perrie ◽  
L. B. Smillie ◽  
S. V. Perry

1. The low-molecular-weight components of myosin from rabbit skeletal muscle migrated as four bands on polyacrylamide-gel electrophoresis in 8m-urea but only as three in systems containing sodium dodecyl sulphate. The two bands of intermediate mobility in 8m-urea (Ml2 and Ml3) had identical mobilities in sodium dodecyl sulphate. 2. The isolation of pure samples of all four low-molecular-weight components by DEAE-Sephadex chromatography is described. 3. The amino acid compositions of components Ml2 and Ml3 were identical. Further analyses showed the presence of 1 mol of phosphate/18500g of component Ml2 and less than 10% of this amount in component Ml3. Neither light component contained ribose. 4. Alkaline phosphatase from Escherichia coli converted component Ml2 into Ml3. Incubation with crude preparations of phosphorylase b kinase or protein kinase in the presence of ATP converted component Ml3 into Ml2. 5. Phosphorylation of component Ml3 with the kinases isolated from skeletal muscle and [γ-32P]ATP gave incorporation of 32P only into component Ml2 whether whole myosin or separated low-molecular-weight components were used. 6. High-voltage electrophoresis at pH6.5 and pH1.8 of a chymotryptic digest of 32P-labelled component Ml2 yielded one major radioactive peptide containing serine phosphate. 7. The amino acid sequence of this peptide was shown to be: Arg-Ala-Ala-Ala-Glu-Gly-Gly-(Ser,Ser(P))-Asn-Val-Phe. This sequence shows no obvious similarity to the site phosphorylated in the conversion of phosphorylase b into phosphorylase a by phosphorylase b kinase. 8. Evidence suggests that in vivo all the 18500-molecular-weight light chain is in the phosphorylated form. The extent of dephosphorylation that occurred during myosin extraction depended on the conditions employed.


1962 ◽  
Vol 237 (3) ◽  
pp. 803-806
Author(s):  
Gordon Guroff ◽  
Sidney Udenfriend

Proteomes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 18
Author(s):  
Alaa Hseiky ◽  
Marion Crespo ◽  
Sylvie Kieffer-Jaquinod ◽  
François Fenaille ◽  
Delphine Pflieger

(1) Background: The proteomic analysis of histones constitutes a delicate task due to the combination of two factors: slight variations in the amino acid sequences of variants and the multiplicity of post-translational modifications (PTMs), particularly those occurring on lysine residues. (2) Methods: To dissect the relationship between both aspects, we carefully evaluated PTM identification on lysine 27 from histone H3 (H3K27) and the artefactual chemical modifications that may lead to erroneous PTM determination. H3K27 is a particularly interesting example because it can bear a range of PTMs and it sits nearby residues 29 and 31 that vary between H3 sequence variants. We discuss how the retention times, neutral losses and immonium/diagnostic ions observed in the MS/MS spectra of peptides bearing modified lysines detectable in the low-mass region might help validate the identification of modified sequences. (3) Results: Diagnostic ions carry key information, thereby avoiding potential mis-identifications due to either isobaric PTM combinations or isobaric amino acid-PTM combinations. This also includes cases where chemical formylation or acetylation of peptide N-termini artefactually occurs during sample processing or simply in the timeframe of LC-MS/MS analysis. Finally, in the very subtle case of positional isomers possibly corresponding to a given mass of lysine modification, the immonium and diagnostic ions may allow the identification of the in vivo structure.


1976 ◽  
Vol 155 (2) ◽  
pp. 383-389 ◽  
Author(s):  
C Kennedy ◽  
R R. Eady ◽  
E Kondorosi ◽  
D K Rekosh

The molybdenum- and iron-containing protein components of nitrogenase purified from Klebsiella pneumoniae, Azotobacter vinelandii, Azotobacter chroococcum and Rhizobium japonicum bacteroids all gave either one or two protein-staining bands after sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, depending on the commercial brand of sodium dodecyl sulphate used. The single band obtained with K. pneumoniae Mo-Fe protein when some commercial brands of sodium dodecyl sulphate were used in the preparation of the electrode buffer was resolved into two bands by the addition of 0.01% (v/v) dodecanol to the buffer. Protein extracted from the two bands obtained after electrophoresis of K. pneumoniae Mo-Fe protein gave unique and distinct peptide ‘maps’ after tryptic digestion. Undissociated Mo-Fe protein contained both sets of tryptic peptides. These data are consistent with Mo-Fe protein from K. pneumoniae being composed of non-identical subunits. Amino acid analyses of the subunit proteins revealed some clear differences in amino acid content, but the two subunits showed close compositional relatedness, with a different index [Metzer, H., Shapiro, M.B., Mosiman, J.E. & Vinton, J.G. (1968) Nature (London) 219, 1166-1168] of 4.7.


1983 ◽  
Vol 213 (1) ◽  
pp. 225-234 ◽  
Author(s):  
N Lambert ◽  
R B Freedman

Protein disulphide-isomerase from bovine liver was purified to homogeneity as judged by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, two-dimensional electrophoresis and N-terminal amino acid analysis. The preparative procedure, a modification of that of Carmichael, Morin & Dixon [(1977) J. Biol. Chem. 252, 7163-7167], is much faster and higher-yielding than previous procedures, and the final purified material is of higher specific activity. The enzyme has Mr 57 000 as determined by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, both in the presence and in the absence of thiol compounds. Gel-filtration studies on Sephadex G-200 indicate an Mr of 107 000, suggesting that the native enzyme is a homodimer with no interchain disulphide bonds. Ultracentrifugation studies give a sedimentation coefficient of 3.5S, implying that the enzyme sediments as the monomer. The isoelectric point, in the presence of 8 M-urea, is 4.2, and some microheterogeneity is detectable. The amino acid composition is comparable with previous analyses of this enzyme from bovine liver and of other preparations of thiol:protein disulphide oxidoreductases whose relation to protein disulphide-isomerase has been controversial. The enzyme contains a very high proportion of Glx + Asx residues (27%). The N-terminal residue is His. The pure enzyme has a very small carbohydrate content, determined as 0.5-1.0% by the phenol/H2SO4 assay. Unless specific steps are taken to remove it, the purified enzyme contains a small amount (5 mol/mol of enzyme) of Triton X-100 carried through the purification.


2016 ◽  
Author(s):  
Wesley G. Chen ◽  
Jacob Witten ◽  
Scott C. Grindy ◽  
Niels Holten-Andersen ◽  
Katharina Ribbeck

AbstractThe nuclear pore complex controls the passage of molecules via hydrophobic phenylalanine-glycine (FG) domains on nucleoporins. Such FG-domains consist of repeating units of FxFG, FG, or GLFG sequences, which can be interspersed with highly charged amino acid sequences. Despite the high density of charge exhibited in certain FG-domains, if and how charge influences FG-domain self-assembly and selective binding of nuclear transport receptors is largely unexplored. Studying how individual charged amino acids contribute to nuclear pore selectivity is challenging with modern in vivo and in vitro techniques due to the complexity of nucleoporin sequences. Here, we present a rationally designed approach to deconstruct essential components of nucleoporins down to 14 amino acid sequences. With these nucleoporin-based peptides, we systematically dissect how charge type and placement of charge influences self-assembly and selective binding of FG-containing gels. Specifically, we find that charge type determines which hydrophobic substrates FG sequences recognize while spatial localization of charge tunes hydrophobic self-assembly and receptor selectivity of FG sequences.


Sign in / Sign up

Export Citation Format

Share Document