scholarly journals A mitochondrial monocarboxylate transporter in rat liver and heart and its possible function in cell control

1975 ◽  
Vol 148 (1) ◽  
pp. 41-47 ◽  
Author(s):  
J Mowbray

Several hydroxy- and keto-substituted monocarboxylates were found to undergo co- as well as counter-exchange across the mitochondrial membrane. The results argue against a simple Donnan system and may be explained by the existence of a transporter for monocarboxylates. In support of this explanation it was apparently possible to ‘pump’ pyruvate to the sucrose-inaccessible space by using the dicarboxylate transporter. Further, several aromatic and aliphatic analogues of pyruvate, but not of di- or tri-carboxylate transport inhibitors, have been shown to prevent pyruvate-exchange reactions. Palmitoylcarnitine was found to have a much stronger affinity for the carrier than either carnitine or pyruvate and the possible consequences of this for carnitine-palmitoylcarnitine exchange and on the control of the pyruvate dehydrogenase complex are explored. In view of the range of transport inhibitors and substrates it is suggested that the carrier has a fairly broad specificity. ‘Inhibitor-stop’ kinetic studies show that the speed of translocation of pyruvate at 1 degrees C is of the same order as malate. The possible correlation between the role of a hydroxy-keto acid transporter in substrate exchange and some whole animal experiments is briefly discussed. It is proposed that for reasons of control the cell will require membrane monocarboxylate transporters no less than di- or tri-carboxylate carriers.

Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1731 ◽  
Author(s):  
Carina Neitzel ◽  
Philipp Demuth ◽  
Simon Wittmann ◽  
Jörg Fahrer

Colorectal cancer (CRC) is among the most frequent cancer entities worldwide. Multiple factors are causally associated with CRC development, such as genetic and epigenetic alterations, inflammatory bowel disease, lifestyle and dietary factors. During malignant transformation, the cellular energy metabolism is reprogrammed in order to promote cancer cell growth and proliferation. In this review, we first describe the main alterations of the energy metabolism found in CRC, revealing the critical impact of oncogenic signaling and driver mutations in key metabolic enzymes. Then, the central role of mitochondria and the tricarboxylic acid (TCA) cycle in this process is highlighted, also considering the metabolic crosstalk between tumor and stromal cells in the tumor microenvironment. The identified cancer-specific metabolic transformations provided new therapeutic targets for the development of small molecule inhibitors. Promising agents are in clinical trials and are directed against enzymes of the TCA cycle, including isocitrate dehydrogenase, pyruvate dehydrogenase kinase, pyruvate dehydrogenase complex (PDC) and α-ketoglutarate dehydrogenase (KGDH). Finally, we focus on the α-lipoic acid derivative CPI-613, an inhibitor of both PDC and KGDH, and delineate its anti-tumor effects for targeted therapy.


2020 ◽  
Vol 7 (2) ◽  
pp. 3645-3658
Author(s):  
Abolfazl Nasiri ◽  
Masoud Sadeghi ◽  
Asad Vaisi-Raygani ◽  
Sara Kiani ◽  
Zahra Aghelan ◽  
...  

The pyruvate dehydrogenase complex (PDC) is a multi-enzyme complex of the mitochondria that provides a link between glycolysis and the Krebs cycle. PDC plays an essential role in producing acetyl-CoA from glucose and the regulation of fuel consumption. In general, PDC enzyme is regulated in two different ways, end-product inhibition and posttranslational modifications (more extensive phosphorylation and dephosphorylation subunit E1). Posttranslational modifications of this enzyme are regulated by various factors. Sirtuins are the class III of histone deacylatases that catalyze protein posttranslational modifications, including deacetylation, adenosine diphosphate ribosylation, and deacylation. Sirt3, Sirt4, and Sirt5 are mitochondrial sirtuins that control the posttranslational modifications of mitochondrial protein. Considering the comprehensive role of sirtuins in post-translational modifications and regulation of metabolic processes, the aim of this review is to explore the role of mitochondrial sirtuins in the regulation of the PDC. PDC deficiency is a common metabolic disorder that causes pyruvate to be converted to lactate and alanine rather than to acetyl-CoA. because this enzyme is in the gateway of complete oxidation, glucose products entering the Krebs cycle and resulting in physiological and structural changes in the organs. Metabolic blockage such as ketogenic diet broken up by b -oxidation and producing acetyl-CoA can improve the patients. Sirtuins play a role in the production of acetyl-CoA through oxidation of fatty acids and other pathways. Thus, we hypothesize that the targets and bioactive compounds targeting mitochondrial sirtuins can be involved in the treatment of PDC deficiency. In general, this review discusses the present knowledge on how mitochondrial sirtuins are involved in the regulation of PDC as well as their possible roles in the treatment of PDC deficiency.


Life Sciences ◽  
2015 ◽  
Vol 121 ◽  
pp. 97-103 ◽  
Author(s):  
Wanqing Sun ◽  
Quan Liu ◽  
Jiyan Leng ◽  
Yang Zheng ◽  
Ji Li

Sign in / Sign up

Export Citation Format

Share Document