scholarly journals The role of free serum tryptophan in the biphasic effect of acute ethanol administration on the concentrations of rat brain tryptophan, 5-hydroxytryptamine and 5-hydroxyindol-3-ylacetic acid

1976 ◽  
Vol 160 (2) ◽  
pp. 315-324 ◽  
Author(s):  
A A Badawy ◽  
M Evans

1. Acute administration of ethanol exerts a biphasic effect on the concentrations of rat brain tryptophan, 5-hydroxytryptamine and 5-hydroxyindol-3-ylacetic acid. Both effects are associated with corresponding changes in the availability of circulating free tryptophan. 2. The initial increases in the above concentrations are prevented by ergotamine, are unaltered by allopurinol and are potentiated by theophylline, whereas the later decreases are prevented by both ergotamine and allopurinol. 3. It is suggested that the initial enhancement by ethanol of brain tryptophan metabolism is caused by catecholamine-mediated lipolysis followed by displacement of protein-bound serum tryptophan, whereas the activation of liver tryptophaan pyrrolase, which is produced by the same mechanism, leads to the later decreases in the brain concentrations of tryptophan and its metabolites. 4. The initial effects of ethanol can be reproduced by an equicaloric dose of sucrose, and a comparison of the two treatments alone could therefore be misleading. 5. The effects of ethanol on liver and brain tryptophan metabolism have also been examined in mice, and a comparison of the results with those previously reported suggests that the ethanol effects are strain-dependent.

1980 ◽  
Vol 186 (3) ◽  
pp. 755-761 ◽  
Author(s):  
A A B Badawy ◽  
B M Snape ◽  
M Evans

1. Acute ethanol administration causes a biphasic change in rat liver tyrosine aminotransferase activity. 2. The initial decrease is significant with a 200 mg/kg dose of ethanol, is prevented by adrenoceptor-blocking agnets and by reserpine, but not by inhibitors of ethanol metabolism, and exhibits many of the characteristics of the inhibition caused by noradrenaline. 3. The subsequent enhancement of the enzyme activity by ethanol is not associated with stabilization of the enzyme, but is sensitive to actinomycin D and cycloheximide. 4. It is suggested that the initial decrease in aminotransferase activity is caused by the release of catecholamines, whereas the subsequent enhancement may be related to the release of glucocorticoids.


1979 ◽  
Vol 178 (3) ◽  
pp. 575-580 ◽  
Author(s):  
A A Badawy ◽  
N F Punjani ◽  
M Evans

1. Chronic ethanol administration enhances rat brain 5-hydroxytryptamine synthesis by increasing the availability of circulating tryptophan to the brain. This increased availability is not insulin-mediated or lipolysis-dependent. 2. Under these conditions, tryptophan accumulates in the liver and apo-(tryptophan pyrrolase) activity is completely abolished, but could be restored by administration of regenerators of liver NAD+ and/or NADP+. 3. All four regenerators used (fructose, Methylene Blue, phenazine methosulphate and sodium pyruvate) prevented the ethanol-induced increase in liver tryptophan concentration and the increased availability of tryptophan to the brain. 4. It is suggested that the enhancement of brain tryptophan metabolism by chronic ethanol administration is caused by the decreased hepatic tryptophan pyrrolase activity. The results are briefly discussed in relation to previous work with ethanol. 5. Fructose enhances the conversion of tryptophan into 5-hydroxyindol-3-ylacetic acid in brains of ethanol-treated rats, whereas Methylene Blue inhibits this conversion in both control and ethanol-treated animals.


1998 ◽  
Vol 275 (5) ◽  
pp. G1106-G1116 ◽  
Author(s):  
Patrick A. Tessman ◽  
Andrea Romani

The acute administration of ethanol mobilizes a considerable amount of Mg2+ from perfused rat livers and isolated hepatocytes in a dose-dependent fashion in the absence of release of cellular K+ or lactate dehydrogenase (LDH) in the extracellular medium. Mg2+extrusion becomes detectable within 2 min and reaches the maximum within 8 min after ethanol addition, declining toward the basal value thereafter irrespective of the persistence of alcohol in the perfusion system and the dose of ethanol administered. The effect is the result of a specific impairment of Mg2+transport and/or regulatory mechanisms. In fact, Mg2+ extrusion does not occur under conditions in which 1) ethanol is replaced by an equivalent dose of DMSO, 2) amiloride or imipramine are used as inhibitors of the Na+/Mg2+exchanger, 3) extracellular Na+ is replaced by an equimolar concentration of choline chloride, and 4) 4-methylpyrazole is used to specifically inhibit alcohol dehydrogenase and cytochrome P-4502E1. Finally, the observation that the cellular level of ATP is markedly reduced after acute ethanol administration would suggest that Mg2+ extrusion results from a decreased buffering capacity of cytosolic Mg-ATP complex.


2007 ◽  
Vol 404 (1) ◽  
pp. 97-104 ◽  
Author(s):  
Belen Ferrer ◽  
Francisco Javier Bermúdez-Silva ◽  
Ainhoa Bilbao ◽  
Lily Alvarez-Jaimes ◽  
Irene Sanchez-Vera ◽  
...  

The endogenous cannabinoid acylethanolamide AEA (arachidonoylethanolamide; also known as anandamide) participates in the neuroadaptations associated with chronic ethanol exposure. However, no studies have described the acute actions of ethanol on AEA production and degradation. In the present study, we investigated the time course of the effects of the intraperitoneal administration of ethanol (4 g/kg of body mass) on the endogenous levels of AEA in central and peripheral tissues. Acute ethanol administration decreased AEA in the cerebellum, the hippocampus and the nucleus accumbens of the ventral striatum, as well as in plasma and adipose tissue. Parallel decreases of a second acylethanolamide, PEA (palmitoylethanolamide), were observed in the brain. Effects were observed 45–90 min after ethanol administration. In vivo studies revealed that AEA decreases were associated with a remarkable inhibition of the release of both anandamide and glutamate in the nucleus accumbens. There were no changes in the expression and enzymatic activity of the main enzyme that degrades AEA, the fatty acid amidohydrolase. Acute ethanol administration did not change either the activity of N-acyltransferase, the enzyme that catalyses the synthesis of the AEA precursor, or the expression of NAPE-PLD (N-acylphosphatidylethanolamine-hydrolysing phospholipase D), the enzyme that releases AEA from membrane phospholipid precursors. These results suggest that receptor-mediated release of acylethanolamide is inhibited by the acute administration of ethanol, and that this effect is not derived from increased fatty acid ethanolamide degradation.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Huimin Liu ◽  
Wenbin Zheng ◽  
Gen Yan ◽  
Baoguo Liu ◽  
Lingmei Kong ◽  
...  

The aim of this study is to describe the acute effects of EtOH on brain edema and cerebral metabolites, using diffusion weight imaging (DWI) and proton magnetic resonance spectroscopy (1H-MRS) at a 7.0T MR and to define changes in apparent diffusion coefficient (ADC) values and the concentration of metabolites in the rat brain after acute EtOH intoxication. ADC values in each ROI decreased significantly at 1 h and 3 h after ethanol administration. ADC values in frontal lobe were decreased significantly compared with other regions at 3 h. For EtOH/Cr+PCr and cerebral metabolites (Cho, Tau, and Glu) differing over time, no significant differences for Ins, NAA, and Cr were observed in frontal lobes. Regression analysis revealed a significant association between TSEtOH/Cr+PCrand TSCho, TSTau, TSGlu, and TSADC. The changes of ADC values in different brain regions reflect the process of the cytotoxic edema in vivo. The characterization of frontal lobes metabolites changes and the correlations between TSEtOH/Cr+PCrand TSCho, TSTau, and TSGluprovide a better understanding for the biological mechanisms in neurotoxic effects of EtOH on the brain. In addition, the correlations between TSEtOH/Cr+PCrand TSADCwill help us to understand development of the ethanol-induced brain cytotoxic edema.


2000 ◽  
Vol 37 (5-6) ◽  
pp. 483-496 ◽  
Author(s):  
P de Gortari ◽  
M Méndez ◽  
I Rodrı́guez-Keller ◽  
L Pérez-Martı́nez ◽  
P Joseph-Bravo

Sign in / Sign up

Export Citation Format

Share Document