cytotoxic edema
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 21)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Author(s):  
L. Christine Turtzo ◽  
Marie Luby ◽  
Neekita Jikaria ◽  
Allison Diane Griffin ◽  
Danielle Greenman ◽  
...  

Author(s):  
Julia A. Hellas ◽  
R. David Andrew

AbstractAn acute reduction in plasma osmolality causes rapid uptake of water by astrocytes but not by neurons, whereas both cell types swell as a consequence of lost blood flow (ischemia). Either hypoosmolality or ischemia can displace the brain downwards, potentially causing death. However, these disorders are fundamentally different at the cellular level. Astrocytes osmotically swell or shrink because they express functional water channels (aquaporins), whereas neurons lack functional aquaporins and thus maintain their volume. Yet both neurons and astrocytes immediately swell when blood flow to the brain is compromised (cytotoxic edema) as following stroke onset, sudden cardiac arrest, or traumatic brain injury. In each situation, neuronal swelling is the direct result of spreading depolarization (SD) generated when the ATP-dependent sodium/potassium ATPase (the Na+/K+ pump) is compromised. The simple, and incorrect, textbook explanation for neuronal swelling is that increased Na+ influx passively draws Cl− into the cell, with water following by osmosis via some unknown conduit. We first review the strong evidence that mammalian neurons resist volume change during acute osmotic stress. We then contrast this with their dramatic swelling during ischemia. Counter-intuitively, recent research argues that ischemic swelling of neurons is non-osmotic, involving ion/water cotransporters as well as at least one known amino acid water pump. While incompletely understood, these mechanisms argue against the dogma that neuronal swelling involves water uptake driven by an osmotic gradient with aquaporins as the conduit. Promoting clinical recovery from neuronal cytotoxic edema evoked by spreading depolarizations requires a far better understanding of molecular water pumps and ion/water cotransporters that act to rebalance water shifts during brain ischemia.


Author(s):  
Min Jeong Ji ◽  
Hee Jung Ryu ◽  
Jeong Hee Hong

Rheumatoid arthritis (RA) is an autoimmune disease that causes inflammation of the synovial membrane ultimately leading to permanent damage in the affected joints. For this study, synovial fluids from 16 patients diagnosed with either RA or osteoarthritis (OA) were used to examine volume regulation and cooperative water channels, both of which are involved in the cytotoxic edema identified in RA-fibroblast-like synoviocytes (FLS). The osmolarity and inflammatory cytokine interleukin (IL)-6 of synovial fluids from RA patients were mildly enhanced compared to that from OA patients. RA-FLS demonstrated the enhanced property of regulatory volume increase in response to IL-6 and synovial fluids from RA patients. Although there was no difference in the protein expression of the volume-associated protein sodium–potassium–chloride cotransporter1 (NKCC1), its activity was increased by treatment with IL-6. Membrane localization of NKCC1 was also increased by IL-6 treatment. Additionally, both the protein and membrane expressions of aquaporin-1 were increased in RA-FLS by IL-6 stimulation. The IL-6-mediated enhanced osmotic sensitivity of RA-FLS likely involves NKCC1 and aquaporin-1, which mainly constitute the volume-associated ion transporter and water channel elements. These results suggest that RA-FLS provide enhanced electrolytes and concomitant water movement through NKCC1 and aquaporin-1, thereby inducing cellular swelling ultimately resulting in cytotoxic edema. Attenuation of cytotoxic edema and verification of its related mechanism will provide novel therapeutic approaches to RA treatment within the scope of cytotoxic edema.


2021 ◽  
Vol 22 (12) ◽  
pp. 6418
Author(s):  
Shotaro Michinaga ◽  
Yutaka Koyama

Traumatic brain injury (TBI) is immediate damage caused by a blow to the head resulting from traffic accidents, falls, and sporting activity, which causes death or serious disabilities in survivors. TBI induces multiple secondary injuries, including neuroinflammation, disruption of the blood–brain barrier (BBB), and brain edema. Despite these emergent conditions, current therapies for TBI are limited or insufficient in some cases. Although several candidate drugs exerted beneficial effects in TBI animal models, most of them failed to show significant effects in clinical trials. Multiple studies have suggested that astrocytes play a key role in the pathogenesis of TBI. Increased reactive astrocytes and astrocyte-derived factors are commonly observed in both TBI patients and experimental animal models. Astrocytes have beneficial and detrimental effects on TBI, including promotion and restriction of neurogenesis and synaptogenesis, acceleration and suppression of neuroinflammation, and disruption and repair of the BBB via multiple bioactive factors. Additionally, astrocytic aquaporin-4 is involved in the formation of cytotoxic edema. Thus, astrocytes are attractive targets for novel therapeutic drugs for TBI, although astrocyte-targeting drugs have not yet been developed. This article reviews recent observations of the roles of astrocytes and expected astrocyte-targeting drugs in TBI.


2021 ◽  
Author(s):  
David Robinson ◽  
Natalie Paige Kreitzer ◽  
Laura Benjamin Ngwenya ◽  
Opeolu Adeoye ◽  
Dan Woo ◽  
...  

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Diego Cardoso Fragoso ◽  
Catherine Marx ◽  
Bruna Garbugio Dutra ◽  
Carlos Jorge da Silva ◽  
Pollyanna Martins da Silva ◽  
...  
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Omar Giyab ◽  
Bendegúz Balogh ◽  
Péter Bogner ◽  
Orsi Gergely ◽  
Arnold Tóth

AbstractThis systematic review aims to test the hypothesis that microbleeds detected by MRI are common and show a characteristic pattern in cerebral fat embolism (CFE). Eighty-four papers involving 140 CFE patients were eligible for this review based on a systematic literature search up to 31 January 2020. An additional case was added from hospital records. Patient data were individually scrutinised to extract epidemiological, clinical and imaging variables. Characteristic CFE microbleed pattern resembling a “walnut kernel” was defined as punctuate hypointensities of monotonous size, diffusely located in the subcortical white matter, the internal capsule and the corpus callosum, with mostly spared corona radiata and non-subcortical centrum semiovale, detected by susceptibility- or T2* weighted imaging. The presence rate of this pattern and other, previously described MRI markers of CFE such as the starfield pattern and further diffusion abnormalities were recorded and statistically compared. The presence rate of microbleeds of any pattern, the “walnut kernel microbleed pattern”, diffusion abnormality of any pattern, the starfield pattern, and cytotoxic edema in the corpus callosum was found to be 98.11%, 89.74%, 97.64%, 68.5%, and 77.27% respectively. The presence rate between the walnut kernel and the starfield pattern was significantly (p < 0.05) different. Microbleeds are common and mostly occur in a characteristic pattern resembling a “walnut kernel” in the CFE MRI literature. Microbleeds of this pattern in SWI or T2* MRI, along with the starfield pattern in diffusion imaging appear to be the most important imaging markers of CFE and may aid the diagnosis in clinically equivocal cases.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yi Yao ◽  
Yonggang Zhang ◽  
Xiaoyang Liao ◽  
Rong Yang ◽  
Yi Lei ◽  
...  

Stroke is the leading cause of global mortality and disability. Cerebral edema and intracranial hypertension are common complications of cerebral infarction and the major causes of mortality. The formation of cerebral edema includes three stages (cytotoxic edema, ionic edema, and vasogenic edema), which involve multiple proteins and ion channels. A range of therapeutic agents that successfully target cerebral edema have been developed in animal studies, some of which have been assessed in clinical trials. Herein, we review the mechanisms of cerebral edema and the research progress of anti-edema therapies for use after ischemic stroke.


Author(s):  
Tomoe Ishikawa ◽  
Yutaka Hoshino ◽  
Hiroyuki Kameda ◽  
Yuji Komaki ◽  
Miyuki Unekawa ◽  
...  
Keyword(s):  

2020 ◽  
Vol 142 (45) ◽  
pp. 19012-19016
Author(s):  
Jing Jin ◽  
Wenliang Ji ◽  
Lijuan Li ◽  
Gang Zhao ◽  
Wenjie Wu ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document