scholarly journals Purification and some properties of a medium-chain acyl-thioester hydrolase from lactating-rabbit mammary gland which terminates chain elongation in fatty acid synthesis

1977 ◽  
Vol 162 (3) ◽  
pp. 473.b1-473.b1
1976 ◽  
Vol 160 (3) ◽  
pp. 683-691 ◽  
Author(s):  
J Knudsen ◽  
S Clark ◽  
R Dils

1. An acyl-thioester hydrolase was isolated from the cytosol of lactating-rabbit mammary gland. The purified enzyme terminates fatty acid synthesis at medium-chain (C8:0-C12:0) acids when it is incubated with fatty acid synthetase and rate-limiting concentrations of malonyl-CoA. These acids are characteristic products of the lactating gland. 2. The mol.wt. of the enzyme is 29000±500 (mean±S.D. of three independent preparations), as estimated by polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate. 3. The enzyme also hydrolyses acyl-CoA esters of chain lengths C10:0-C16:0 when these are used as model substrates. The greatest activity was towards dodecanoyl-CoA, and the three preparations had specific activities of 305, 1130 and 2010 nmol of dodecanoyl-CoA hydrolysed/min per mg of protein when 56muM substrate was used. 4. The way in which this enzyme controls the synthesis of medium-chain fatty acids by fatty acid synthetase is briefly discussed.


1983 ◽  
Vol 209 (1) ◽  
pp. 215-222 ◽  
Author(s):  
I Grunnet ◽  
J Knudsen

Fatty acid synthetase from goat mammary gland was subjected to limited proteolysis by trypsin and elastase. Both proteolytic enzymes selectively cleaved the chain-terminating thioester hydrolase component from the enzyme complex, leaving all other partial activities intact in the core peptides. Trypsin, but not elastase, caused extensive degradation of the released thioester hydrolase. The released thioester hydrolase could be purified to homogeneity by gel filtration. The molecular weight was estimated as 29 000 and the enzyme showed only significant hydrolytic activity toward long-chain acyl-CoA esters. The core peptides retained the ability to synthesize medium-chain acyl-CoA esters in the presence of 2,6-di-O-methyl-alpha-cyclodextrin. The results conclusively show that the terminating thioester hydrolase of goat mammary-gland fatty acid synthetase is not involved in termination of medium-chain-length fatty acid synthesis by this enzyme.


1993 ◽  
Vol 48 (7-8) ◽  
pp. 616-622 ◽  
Author(s):  
Jochen Fuhrmann ◽  
Klaus-Peter Heise

Abstract The colorless embryos of Cuphea wrightii A. Gray accumulate capric (about 30%) and lauric acid (about 50%) in their storage lipids. Fractionation studies show that the capacities for the synthesis of these medium-chain fatty acids (MCFA) from [1-14C]acetate were strictly bound to intact plastids. These, in turn, obligately required the addition of ATP. ATP could partially be substituted by ADP. Reduction of the pyridine nucleotide pool, required for opti­mum MCFA formation within the plastids, was driven by glucose 6-phosphate. Under these conditions the plastids were capable of synthesizing MCFA like the intact tissue. The presence of CoA in the incubation medium induced acyl-CoA formation. The observed accumulation of unesterified capric and lauric acid in the absence of CoA suggests that acyl-ACP thioesterase activity is involved in the chain termination. Treatment with cerulenin led to an unexpectedly small reduction of total fatty acid synthesis while the chain elongation of capric acid was clearly inhibited. A similar accumulation of capric acid at the expense of longer chain fatty acids has been observed after replacing ATP by ADP. These findings implicate that even the condensing enzymes are involved in the control of chain ter­mination.


Lipids ◽  
1992 ◽  
Vol 27 (11) ◽  
pp. 908-911 ◽  
Author(s):  
M. L. Spear ◽  
J. Bitman ◽  
M. Hamosh ◽  
D. L. Wood ◽  
D. Gavula ◽  
...  

1972 ◽  
Vol 129 (4) ◽  
pp. 929-935 ◽  
Author(s):  
Isabel A. Forsyth ◽  
Christopher R. Strong ◽  
Raymond Dils

1. The rate of fatty acid synthesis by mammary explants from rabbits pregnant for 16 days or from rabbits pseudopregnant for 11 days was stimulated up to 15-fold by culturing for 2–4 days with prolactin. This treatment initiated the predominant synthesis of C8:0 and C10:0 fatty acids, which are characteristic of rabbit milk. 2. Inclusion of insulin in the culture medium increased the rate of synthesis of these medium-chain fatty acids. By contrast the inclusion of corticosterone led to the predominant synthesis of long-chain fatty acids. When explants were cultured for 2–4 days with insulin, corticosterone and prolactin, the rate of fatty acid synthesis increased up to 42-fold, but both medium- and long-chain fatty acids were synthesized. 3. These results show that the stimulus to mammary-gland lipogenesis and the initiation of synthesis of medium-chain fatty acids observed between days 16 and 23 of pregnancy in the rabbit can be simulated in vitro by prolactin alone. 4. When mammary explants from rabbits pregnant for 23 days were cultured for 2 days with insulin, corticosterone and prolactin, the rate of fatty acid synthesis increased fivefold, but there was a preferential synthesis of long-chain fatty acids. Culture with prolactin alone had little effect on the rate or pattern of fatty acids synthesized. 5. The results are compared with findings in vivo on the control of lipogenesis in the rabbit mammary gland, and are contrasted with the known effects of hormones in vitro on the mammary gland of the mid-pregnant mouse.


Sign in / Sign up

Export Citation Format

Share Document