scholarly journals Steady-state and pre-steady kinetic studies on mitochondrial sheep liver aldehyde dehydrogenase. A comparison with the cytoplasmic enzyme

1978 ◽  
Vol 171 (3) ◽  
pp. 527-531 ◽  
Author(s):  
A K H MacGibbon ◽  
L F Blackwell ◽  
P D Buckley

Kinetic studies were carried out on mitochondrial aldehyde dehydrogenase (EC 1.2.1.3) isolated from sheep liver. Steady-state studies over a wide range of acetaldehyde concentrations gave a non-linear double-reciprocal plot. The dissociation of NADH from the enzyme was a biphasic process with decay constants 0.6s-1 and 0.09s-1. Pre-steady-state kinetic data with propionaldehyde as substrate could be fitted by using the same burst rate constant (12 +/- 3s-1) over a wide range of propionaldehyde concentrations. The quenching of protein fluorescence on the binding of NAD+ to the enzyme was used to estimate apparent rate constants for binding (2 × 10(4) litre.mol-1.s-1) and dissociation (4s-1). The kinetic properties of the mitochondrial enzyme, compared with those reported for the cytoplasmic aldehyde dehydrogenase from sheep liver, show significant differences, which may be important in the oxidation of aldehydes in vivo.

1977 ◽  
Vol 167 (2) ◽  
pp. 469-477 ◽  
Author(s):  
Alastair K. H. MacGibbon ◽  
Leonard F. Blackwell ◽  
Paul D. Buckley

Stopped-flow experiments in which sheep liver cytoplasmic aldehyde dehydrogenase (EC 1.2.1.3) was rapidly mixed with NAD+ and aldehyde showed a burst of NADH formation, followed by a slower steady-state turnover. The kinetic data obtained when the relative concentrations and orders of mixing of NAD+ and propionaldehyde with the enzyme were varied were fitted to the following mechanism: [Formula: see text] where the release of NADH is slow. By monitoring the quenching of protein fluorescence on the binding of NAD+, estimates of 2×105 litre·mol−1·s−1 and 2s−1 were obtained for k+1 and k−1 respectively. Although k+3 could be determined from the dependence of the burst rate constant on the concentration of propionaldehyde to be 11s−1, k+2 and k−2 could not be determined uniquely, but could be related by the equation: (k−2+k+3)/k+2 =50×10−6mol·litre−1. No significant isotope effect was observed when [1-2H]propionaldehyde was used as substrate. The burst rate constant was pH-dependent, with the greatest rate constants occurring at high pH. Similar data were obtained by using acetaldehyde, where for this substrate (k−2+k+3)/k+2=2.3×10 −3mol·litre−1 and k+3 is 23s−1. When [1,2,2,2-2H]acetaldehyde was used, no isotope effect was observed on k+3, but there was a significant effect on k+2 and k−2. A burst of NADH production has also been observed with furfuraldehyde, trans-4-(NN-dimethylamino)cinnamaldehyde, formaldehyde, benzaldehyde, 4-(imidazol-2-ylazo)benzaldehyde, p-methoxybenzaldehyde and p-methylbenzaldehyde as substrates, but not with p-nitrobenzaldehyde.


1978 ◽  
Vol 171 (3) ◽  
pp. 533-538 ◽  
Author(s):  
A K H MacGibbon ◽  
S J Haylock ◽  
P D Buckley ◽  
L F Blackwell

The hydrolysis of 4-nitrophenyl acetate catalysed by cytoplasmic aldehyde dehydrogenase (EC 1.2.1.3) from sheep liver was studied by steady-state and transient kinetic techniques. NAD+ and NADH stimulated the steady-state rate of ester hydrolysis at concentrations expected on the basis of their Michaelis constants from the dehydrogenase reaction. At higher concentrations of the coenzymes, both NAD+ and NADH inhibited the reaction competitively with respect to 4-nitrophenyl acetate, with inhibition constants of 104 and 197 micron respectively. Propionaldehyde and chloral hydrate are competitive inhibitors of the esterase reaction. A burst in the production of 4-nitrophenoxide ion was observed, with a rate constant of 12 +/- 2s-1 and a burst amplitude that was 30% of that expected on the basis of the known NADH-binding site concentration. The rate-limiting step for the esterase reaction occurs after the formation of 4-nitrophenoxide ion. Arguments are presented for the existence of distinct ester- and aldehyde-binding sites.


1984 ◽  
Vol 224 (2) ◽  
pp. 437-443 ◽  
Author(s):  
B Houston ◽  
H G Nimmo

A new purification procedure for rat liver ATP citrate lyase is described. The method reproducibly gives homogenous undegraded enzyme. Steady-state kinetic analysis of ATP citrate lyase was complicated by the presence of ADP, a product of the reaction, in solutions of ATP. The kinetic patterns observed were dependent on whether ADP was removed by the assay system. When assays were performed with a method in which ADP was removed, the results showed that the enzyme obeys a double-displacement mechanism with a phosphoenzyme intermediate. This resolves a controversy between the results of previous kinetic studies and those of isotope-exchange and enzyme-labelling experiments.


1982 ◽  
Vol 203 (3) ◽  
pp. 617-627 ◽  
Author(s):  
G J Hart ◽  
F M Dickinson

The kinetic properties of highly purified preparations of sheep liver cytoplasmic aldehyde dehydrogenase (preparations that had been shown to be free from contamination with the corresponding mitochondrial enzyme) were investigated with both propionaldehyde and butyraldehyde as substrates. At low aldehyde concentrations, double-reciprocal plots with aldehyde as the variable substrate are linear, and the mechanism appears to be ordered, with NAD+ as the first substrate to bind. Stopped-flow experiments following absorbance and fluorescence changes show bursts of NADH production in the pre-steady state, but the observed course of reaction depends on the pre-mixing conditions. Pre-mixing enzyme with NAD+ activates the enzyme in the pre-steady state and we suggest that the reaction mechanism may involve isomeric enzyme-NAD+ complexes. High concentrations of aldehyde in steady-state experiments produce significant activation (about 3-fold) at high concentrations of NAD+, but inhibition at low concentrations of NAD+. Such behaviour may be explained by postulating the participation of an abortive complex in product release. Stopped-flow measurements at high aldehyde concentrations indicate that the mechanism of reaction under these conditions is complex.


Sign in / Sign up

Export Citation Format

Share Document