scholarly journals Oxidation of glycine by Phaseolus leghaemoglobin with associated catabolic reactions at the haem

1978 ◽  
Vol 176 (2) ◽  
pp. 351-358 ◽  
Author(s):  
P Lehtovaara

Leghaemoglobin from the root nodules of kidney bean (Phaseolus vulgaris) reacts in alkaline glycine solutions as a glycine oxidase in a reaction that may also be regarded as a coupled oxidation. Leghaemoglobin is reduced to the ferrous form by glycinate, the oxygen complex is formed, and finally the haem is attacked to yield a green reaction product. Glycine is simultaneously oxidized to glyoxylate, and hydrogen peroxide is generated. The initial velocity of the formation of the green product is proportional to the concentrations of leghaemoglobin and glycine, and the optimum pH for the reaction is 10.2. The green product is not formed if carbon monoxide, azide of imidazole is bound to the haem, whereas oxidation of glycine to glyoxylate is not inhibited by azide and not essentially by carbon monoxide. Haem breakdown is activated by digestion of leghaemoglobin by carboxypeptidase, and partly inhibited by catalase and superoxide dismutase.

1995 ◽  
Vol 50 (7-8) ◽  
pp. 543-551
Author(s):  
Bernhard Epping ◽  
Alexander P. Hansen ◽  
Peter Martin

Abstract Nodules of Rhizobium leguminosarum bv. phaseoli in symbiosis with Phaseolus vulgaris were compared with regard to their nitrogenase activity and activities of enzymes involved in the removal of O2·- and H2O2 as well as total ascorbate content. Activities of catalase (EC 1.11.1.6), ascorbate peroxidase (EC 1.11.1.11), and total ascorbate content were consist­ently higher in nodules inhabited by bacterial strains with higher nitrogenase activity. Values for superoxide dismutase (EC 1.15.11), and guaiacol peroxidase activity did not differ for the bacterial strains compared. On the other hand, when different plant cultivars were inoculated with the same bacterial strain, high nitrogenase activity did not correlate with a higher activ­ity of the oxygen scavenging enzyms or a higher content of total ascorbate. In this case, values for guaiacol peroxidase activity were greatly enhanced in nodules with lower nitrogen­ ase activity. This may be part of a hypersensitive reaction of the plant cultivar against the bacterial symbiotic partner. Inhibition of catalase activity in the nodules by addition of triazole to the nutrient solution did not alter nitrogenase activity within the first nine hours after addition. It can be concluded that the activity of catalase, ascorbate peroxidase, and superoxide dismutase is not generally coupled to nitrogenase activity in root nodules of P. vulgaris.


1989 ◽  
Vol 256 (2) ◽  
pp. H584-H588 ◽  
Author(s):  
J. M. Brown ◽  
M. A. Grosso ◽  
L. S. Terada ◽  
C. J. Beehler ◽  
K. M. Toth ◽  
...  

Reperfusion with untreated, carbon monoxide-treated, or glutaraldehyde-fixed human erythrocytes (RBC) increased ventricular function and decreased myocardial hydrogen peroxide (H2O2) levels [assessed by H2O2-dependent aminotriazole (AMT) inactivation of myocardial catalase activities] of ischemic, isolated rat hearts. In contrast, reperfusion with RBC that lacked catalase (AMT treated) and/or glutathione (N-ethylmaleimide treated) did not increase ventricular function or decrease myocardial H2O2 levels as much as reperfusion with untreated RBC. By comparison, reperfusion with superoxide dismutase-depleted (diethyldithiocarbamate-treated) or anion channel-inhibited (diisothiocyanodisulfonic acid stilbene-treated) RBC increased ventricular function and decreased myocardial H2O2 levels the same as untreated RBC. The results suggest that catalase and/or glutathione in intact RBC can decrease endogenously generated H2O2 and related reperfusion injury in ischemic, isolated perfused hearts.


2000 ◽  
Vol 27 (10) ◽  
pp. 973 ◽  
Author(s):  
Esteban Sánchez ◽  
Juan M. Soto ◽  
Pablo C. García ◽  
Luis R. López-Lefebre ◽  
Rosa M. Rivero ◽  
...  

The objective of the present work was to determine the effect of nitrogen toxicity on the metabolism of phenolic compounds and of oxidative stress in Phaseolus vulgaris L. cv. Strike. The nitrogen was applied to the nutrient solution as NH4NO3 at 5.4, 10.8, 16.2, 21.6 and 27 mM. The results indicate that the application of 27 mM N can be defined as toxic, as it drastically depressed growth of the green bean plants in our experiment. In addition, the abiotic stress from the application of this N dosage inhibited the enzymes polyphenol oxidase, peroxidase and cata-lase, and stimulated phenylalanine ammonia-lyase and superoxide dismutase activities. The result was foliar accumulation of phenolic compounds and hydrogen peroxide (H2O2). The accumulation of H2O2 also apparently caused a reduction in biomass production.


2004 ◽  
Vol 59 (11-12) ◽  
pp. 849-855 ◽  
Author(s):  
Kerstin Janisch ◽  
Harald Schempp

Plants respond to the attack of pathogens with the oxidative burst, a production of reactive oxygen species (ROS). In this work a cell culture suspension of Phaseolus vulgaris was used to investigate the oxidative burst triggered by a conidia suspension of different races of Colletotrichum lindemuthianum. As a defence response of the cells a two-phase peak was observed with all used races of Colletotrichum lindemuthianum, varying only in the produced amounts of hydrogen peroxide. Findings with additives such as superoxide dismutase (SOD), diphenyleneiodonium (DPI) and catalase gave rise to the conclusion that more superoxide radicals were produced than be detectable with Amplex® Red as hydrogen peroxide. It is assumed that the conversion of the superoxide radical is spontaneous and not driven via a cell-derived superoxide dismutase. The addition of low-molecular cell wall components (ergosterol, glucosamine, galactosamine) showed clearly that compounds like this act as elicitors and thus are involved in triggering the burst. Furthermore, an evaluation of the metabolizing capacities of hydrogen peroxide of the suspension culture cells revealed the enormous capacity of the cells to detoxify this ROS.


1997 ◽  
Vol 345 (1) ◽  
pp. 156-159 ◽  
Author(s):  
R. Gabbianelli ◽  
A. Battistoni ◽  
C. Capo ◽  
F. Polticelli ◽  
G. Rotilio ◽  
...  

1997 ◽  
Vol 6 (5-6) ◽  
pp. 369-374
Author(s):  
Y. Oyanagui

Anti-inflammatory actions of two anti-allergic drugs, alone or with dexamethasone (Dex) were examined in two models, because inflammation is claimed to be important for allergic events, especially for asthma. Cromoglycate and nedocromil were tested in ischaemic- and histamineinduced paw oedema models of mice. These antiallergic drugs (1–100 mg/kg, i.p.) failed to suppress these oedemata, but enhanced the suppressions by a low dose of dexamethasone (0.1 mg/kg, s.c.) at 3–8 h after Dex injection. The mode of effects by anti-allergic drugs resembled that of a natural antioxidant (α-tocopherol, β-carotene etc.), and was different from that of an immunosuppressant like FK506. The enhancing potencies of the two anti-allergic drugs were similar at 6 h after Dex in both oedemata, and were diminished by superoxide dismutase (SOD) or catalase (i.p.). Cycloheximide completely abolished suppressions. Nedocromil, but not cromoglycate, inhibits inflammatory events. Therefore, there are common unknown actions by which the two anti-allergics enhance suppression by Dex. A possible mechanism of this action was supposed to enhance the superoxide and/or hydrogen peroxide-dependent glucocorticoid receptor (GR) signalling in the target cells.


Sign in / Sign up

Export Citation Format

Share Document