scholarly journals Subcellular distribution of the different platelet proteins phosphorylated on exposure of intact platelets to ionophore A23187 or to prostaglandin E1. Possible role of a membrane phosphopolypeptide in the regulation of calcium-ion transport

1979 ◽  
Vol 184 (3) ◽  
pp. 651-661 ◽  
Author(s):  
J E B Fox ◽  
A K Say ◽  
R J Haslam

Exposure of 32P-labelled human platelets to ionophore A23187 results in an increased incorporation of 32P into polypeptides with apparent mol.wts. of 47 000 (P47) and 20 000 (P20), whereas exposure to prostaglandin E1 results in increased labelling of polypeptides with apparent mol.wts. of 24 000 (P24) and 22 000 (P22) [Haslam, Lynham & Fox (1979) Biochem. J. 178, 397-406]. Labelled platelets that had been incubated with ionophore A23187 or prostaglandin E1 were sonicated and rapidly separated into three fractions by differential centrifugation. Electron microscopy and measurement of marker enzymes indicated that the 1300-19 000 gav. particulate fraction was enriched in granules, mitochondria and plasma membranes, that the 19 000-90 000 gav. particulate fraction was enriched in both intracellular and plasma membranes and that the 90 000 gav. supernatant contained only soluble proteins. 32P-labelled phosphopolypeptide P47 was present almost exclusively in the 90 000 gav. supernatant, whereas phosphopolypeptide P20 was largely dephosphorylated under fractionation conditions that protected other phosphopolypeptides. 32P-labelled phosphopolypeptide P24 was enriched in both particulate fractions, but particularly in the 19 000-90 000 gav. fraction, and may therefore be present in both the intracellular and plasma membranes. Phosphopolypeptide P22 appeared to be similarly distributed. Both particulate fractions were capable of the ATP-dependent oxalate-stimulated uptake of Ca2+. When the 19 000-90000 gav. membrane fraction was prepared from platelets that had been incubated with ionophore A23187, active uptake of Ca2+ did not occur, but when this fraction was isolated from platelets that had been exposed to prostaglandin E1, uptake of Ca2+ was significantly greater than observed with the corresponding membranes from control platelets. It is suggested that phosphorylation of polypeptide P24 (or P22) by a cyclic AMP-dependent protein kinase may promote the active transport of Ca2+ out of the platelet cytosol.

1991 ◽  
Vol 279 (2) ◽  
pp. 521-527 ◽  
Author(s):  
M Sandberg ◽  
E Butt ◽  
C Nolte ◽  
L Fischer ◽  
M Halbrügge ◽  
...  

A newly designed cyclic AMP (cAMP) analogue, Sp-5,6-dichloro-1-beta-D- ribofuranosylbenzimidazole-3′,5′-monophosphorothioate (Sp-5,6-DCl-cBiMPS), and 8-(p-chlorophenylthio)-cAMP (8-pCPT-cAMP) were compared with respect to their chemical and biological properties in order to assess their potential as activators of the cAMP-dependent protein kinases (cAMP-PK) in intact cells. Sp-5,6-DCl-cBiMPS was shown to be both a potent and specific activator of purified cAMP-PK and of cAMP-PK in platelet membranes, whereas 8-pCPT-cAMP proved to be a potent activator of cAMP-PK and cyclic-GMP-dependent protein kinase (cGMP-PK) both as purified enzymes and in platelet membranes. Sp-5,6-DCl-cBiMPS was not significantly hydrolysed by three types of cyclic nucleotide phosphodiesterases, whereas 8-pCPT-cAMP (and 8-bromo-cAMP) was hydrolysed to a significant extent by the Ca2+/calmodulin-dependent phosphodiesterase and by the cGMP-inhibited phosphodiesterase. The apparent lipophilicity, a measure of potential cell-membrane permeability, of Sp-5,6-DCl-cBiMPS was higher than that of 8-pCPT-cAMP. Extracellular application of Sp-5,6-DCl-cBiMPS to intact human platelets reproduced the pattern of protein phosphorylation induced by prostaglandin E1, a cAMP-increasing inhibitor of platelet activation. In intact platelets, Sp-5,6- DCl-cBiMPS was also more effective than 8-pCPT-cAMP in inducing quantitative phosphorylation of the 46/50 kDa vasodilator-stimulated phosphoprotein (VASP), a major substrate of cAMP-PK in platelets. As observed with prostaglandin E1, pretreatment of human platelets with Sp-5,6-DCl-cBiMPS prevented the aggregation induced by thrombin. The results suggest that Sp-5,6-DCl-cBiMPS is a very potent and specific activator of cAMP-PK in cell extracts and intact cells and, in this respect, is superior to any other cAMP analogue used for intact-cell studies. In contrast with 8-pCPT-cAMP, Sp-5,6-DCl-cBiMPS can be used to distinguish the signal-transduction pathways mediated by cAMP-PK and cGMP-PK.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
You-hong Wang ◽  
Zhen Guo ◽  
Liang An ◽  
Yong Zhou ◽  
Heng Xu ◽  
...  

AbstractRadioresistance continues to be the leading cause of recurrence and metastasis in nasopharyngeal cancer. Long noncoding RNAs are emerging as regulators of DNA damage and radioresistance. LINC-PINT was originally identified as a tumor suppressor in various cancers. In this study, LINC-PINT was significantly downregulated in nasopharyngeal cancer tissues than in rhinitis tissues, and low LINC-PINT expressions showed poorer prognosis in patients who received radiotherapy. We further identified a functional role of LINC-PINT in inhibiting the malignant phenotypes and sensitizing cancer cells to irradiation in vitro and in vivo. Mechanistically, LINC-PINT was responsive to DNA damage, inhibiting DNA damage repair through ATM/ATR-Chk1/Chk2 signaling pathways. Moreover, LINC-PINT increased radiosensitivity by interacting with DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and negatively regulated the expression and recruitment of DNA-PKcs. Therefore, these findings collectively support the possibility that LINC-PINT serves as an attractive target to overcome radioresistance in NPC.


Sign in / Sign up

Export Citation Format

Share Document