scholarly journals The location of dissimilatory nitrite reductase and the control of dissimilatory nitrate reductase by oxygen in Paracoccus denitrificans

1980 ◽  
Vol 192 (1) ◽  
pp. 231-240 ◽  
Author(s):  
P R Alefounder ◽  
S J Ferguson

1. A method is described for preparing spheroplasts from Paracoccus denitrificans that are substantially depleted of dissimilatory nitrate reductase (cytochrome cd) activity. Treatment of cells with lysozyme + EDTA together with a mild osmotic shock, followed by centrifugation, yielded a pellet of spheroplasts and a supernatant that contained d-type cytochrome. The spheroplasts were judged to have retained an intact plasma membrane on the basis that less than 1% of the activity of a cytoplasmic marker protein, malate dehydrogenase, was released from the spheroplasts. In addition to a low activity towards added nitrite, the suspension of spheroplasts accumulated the nitrite that was produced by respiratory chain-linked reduction of nitrate. It is concluded that nitrate reduction occurs at the periplasmic side of the plasma membrane irrespective of whether nitrite is generated by nitrate reduction or is added exogenously. 2. Further evidence for the integrity of the spheroplasts was that nitrate reduction was inhibited by O2, and that chlorate was reduced at a markedly lower rate than nitrate. These data are taken as evidence for an intact plasma membrane because it was shown that cells acquire the capability to reduce nitrate under aerobic conditions after addition of low amounts of Triton X-100 which, with the same titre, also overcame the permeability barrier to chlorate reduction by intact cells. The close relationship between the appearance of chlorate reduction and the loss of the inhibitory effect of O2 on nitrate reduction also suggests that the later feature of nitrate respiration is due to a control on the accessibility of nitrate to its reductase rather than on the flow of electrons to nitrate reductase.


1992 ◽  
Vol 38 (10) ◽  
pp. 1042-1047 ◽  
Author(s):  
Christian Chauret ◽  
Wilfredo L. Barraquio ◽  
Roger Knowles

Nondenaturating disc gel electrophoresis revealed that 99Mo was incorporated into the nitrate reductase of Azospirillum brasilense grown in the absence but not in the presence of tungstate. Under denitrifying conditions, A. brasilense grown in tungsten-free medium steadily accumulated 99Mo for 12 h. In contrast, Paracoccus denitrificans grown under the same conditions ceased uptake after 1 h. However, both bacteria were incapable of accumulating significant amounts of 99Mo in media containing 10 mM tungstate, even though nitrate was reduced by A. brasilense. Aerobically grown A. brasilense cells transported 99Mo more efficiently than anaerobically grown cells. Key words: Azospirillum brasilense, tungsten, molybdenum incorporation, nitrate reduction.



2007 ◽  
Vol 409 (1) ◽  
pp. 159-168 ◽  
Author(s):  
Andrew J. Gates ◽  
David J. Richardson ◽  
Julea N. Butt

Paracoccus pantotrophus expresses two nitrate reductases associated with respiratory electron transport, termed NapABC and NarGHI. Both enzymes derive electrons from ubiquinol to reduce nitrate to nitrite. However, while NarGHI harnesses the energy of the quinol/nitrate couple to generate a transmembrane proton gradient, NapABC dissipates the energy associated with these reducing equivalents. In the present paper we explore the nitrate reductase activity of purified NapAB as a function of electrochemical potential, substrate concentration and pH using protein film voltammetry. Nitrate reduction by NapAB is shown to occur at potentials below approx. 0.1 V at pH 7. These are lower potentials than required for NarGH nitrate reduction. The potentials required for Nap nitrate reduction are also likely to require ubiquinol/ubiquinone ratios higher than are needed to activate the H+-pumping oxidases expressed during aerobic growth where Nap levels are maximal. Thus the operational potentials of P. pantotrophus NapAB are consistent with a productive role in redox balancing. A Michaelis constant (KM) of approx. 45 μM was determined for NapAB nitrate reduction at pH 7. This is in line with studies on intact cells where nitrate reduction by Nap was described by a Monod constant (KS) of less than 15 μM. The voltammetric studies also disclosed maximal NapAB activity in a narrow window of potential. This behaviour is resistant to change of pH, nitrate concentration and inhibitor concentration and its possible mechanistic origins are discussed.



2019 ◽  
Vol 201 (11) ◽  
Author(s):  
Dörte Falke ◽  
Bianca Biefel ◽  
Alexander Haase ◽  
Stefan Franke ◽  
Marco Fischer ◽  
...  

ABSTRACTSpores have strongly reduced metabolic activity and are produced during the complex developmental cycle of the actinobacteriumStreptomyces coelicolor. Resting spores can remain viable for decades, yet little is known about how they conserve energy. It is known, however, that they can reduce either oxygen or nitrate using endogenous electron sources.S. coelicoloruses either a cytochromebdoxidase or a cytochromebcc-aa3oxidase supercomplex to reduce oxygen, while nitrate is reduced by Nar-type nitrate reductases, which typically oxidize quinol directly. Here, we show that in resting spores the Nar1 nitrate reductase requires a functionalbcc-aa3supercomplex to reduce nitrate. Mutants lacking the completeqcr-ctagenetic locus encoding thebcc-aa3supercomplex showed no Nar1-dependent nitrate reduction. Recovery of Nar1 activity was achieved by genetic complementation but only when the completeqcr-ctalocus was reintroduced to the mutant strain. We could exclude that the dependence on the supercomplex for nitrate reduction was via regulation of nitrate transport. Moreover, the catalytic subunit, NarG1, of Nar1 was synthesized in theqcr-ctamutant, ruling out transcriptional control. Constitutive synthesis of Nar1 in mycelium revealed that the enzyme was poorly active in this compartment, suggesting that the Nar1 enzyme cannot act as a typical quinol oxidase. Notably, nitrate reduction by the Nar2 enzyme, which is active in growing mycelium, was not wholly dependent on thebcc-aa3supercomplex for activity. Together, our data suggest that Nar1 functions together with the proton-translocatingbcc-aa3supercomplex to increase the efficiency of energy conservation in resting spores.IMPORTANCEStreptomyces coelicolorforms spores that respire with either oxygen or nitrate, using only endogenous electron donors. This helps maintain a membrane potential and, thus, viability. Respiratory nitrate reductase (Nar) usually receives electrons directly from reduced quinone species; however, we show that nitrate respiration in spores requires a respiratory supercomplex comprising cytochromebccoxidoreductase andaa3oxidase. Our findings suggest that the Nar1 enzyme in theS. coelicolorspore functions together with the proton-translocatingbcc-aa3supercomplex to help maintain the membrane potential more efficiently. Dissecting the mechanisms underlying this survival strategy is important for our general understanding of bacterial persistence during infection processes and of how bacteria might deal with nutrient limitation in the natural environment.



1997 ◽  
Vol 167 (1) ◽  
pp. 61-66 ◽  
Author(s):  
Heather J. Sears ◽  
Phillip J. Little ◽  
D. J. Richardson ◽  
B. C. Berks ◽  
Stephen Spiro ◽  
...  


1992 ◽  
Vol 282 (1) ◽  
pp. 181-188 ◽  
Author(s):  
N Olmo ◽  
J Turnay ◽  
G Risse ◽  
R Deutzmann ◽  
K von der Mark ◽  
...  

Modulation of 5′-nucleotidase activity by the extracellular matrix proteins fibronectin, laminin and their fragments has been studied in plasma membrane preparations as well as in intact BCS-TC2 and Rugli cells. The ectoenzyme on plasma membranes is activated by laminin; fibronectin inhibits the AMPase activity on BCS-TC2 plasma membranes but no inhibitory effect is found in plasma membrane preparations from Rugli cells. These effects are dependent on the preincubation time and protein concentration. When the effect of the extracellular matrix proteins is studied on intact cells, both BCS-TC2 and Rugli cells show similar behaviour. A decrease in the enzyme activity is observed in the presence of fibronectin. The AMPase inhibitory activity is located on its 40 kDa fragment. No inhibitory activity is found in other fibronectin fragments, including the 140 kDa fragment which contains the RGDS cell-adhesion sequence. Laminin and its E1-4 and E8 fragments are able to activate the ecto-5′-nucleotidase activity of both BCS-TC2 and Rugli cells. The effect of the E1-4 fragment on intact cells is greater than that observed for the E8 fragment and uncleaved laminin. Our results suggest a bifunctional role for 5′-nucleotidase as ectoenzyme and cell receptor for extracellular matrix proteins.



Microbiology ◽  
2006 ◽  
Vol 152 (12) ◽  
pp. 3529-3534 ◽  
Author(s):  
Igor Kučera

When grown anaerobically on a succinate+nitrate (SN) medium, Paracoccus denitrificans forms the membrane-bound, cytoplasmically oriented, chlorate-reducing nitrate reductase Nar, while the periplasmic enzyme Nap is expressed during aerobic growth on butyrate+oxygen (BO) medium. Preincubation of SN cells with chlorate produced a concentration-dependent decrease in nitrate utilization, which could be ascribed to Nar inactivation. Toluenization rendered Nar less sensitive to chlorate, but more sensitive to chlorite, suggesting that the latter compound may be the true inactivator. The Nap enzyme of BO cells was inactivated by both chlorate and chlorite at concentrations that were at least two orders of magnitude lower than those shown to affect Nar. Partial purification of Nap resulted in insensitivity to chlorate and diminished sensitivity to chlorite. Azide was specific for SN cells in protecting nitrate reductase against chlorate attack, the protective effect of nitrate being more pronounced in BO cells. The results are discussed in terms of different metabolic activation of chlorine oxoanions in both types of cells, and limited permeation of chlorite across the cell membrane.



1995 ◽  
Vol 312 (2) ◽  
pp. 485-489 ◽  
Author(s):  
P N Henschke ◽  
S J Elliott

The model oxidant, t-butyl hydroperoxide (t-buOOH), inhibits Ins(1,4,5)P3-dependent Ca2+ signalling in calf pulmonary artery endothelial cells. Metabolism of t-buOOH within the cytosol is coupled to the oxidation of glutathione. In this study, we investigated whether oxidized glutathione (GSSG) is the intracellular moiety responsible for mediating the effects of t-buOOH on Ca2+ signalling. The increase in cytosolic [Ca2+] stimulated by application of 2,5-di-t-butylhydroquinone (BHQ) was used to estimate the luminal Ca2+ content of the Ins(1,4,5)P3-sensitive store in intact cells. Luminal Ca2+ content was unaffected by t-buOOH (0.4 mM, 0-3 h) unless intracellular GSSG content was concomitantly elevated. The effect was specific for increased GSSG and was not replicated by depletion of GSH. These results suggest that cytosolic GSSG, produced endogenously within the endothelial cell, decreases the luminal Ca2+ content of Ins(1,4,5)P3-sensitive Ca2+ stores. Depletion of internal Ca2+ stores by GSSG may represent a key mechanism by which some forms of oxidant stress inhibit signal transduction in vascular tissue. At the plasma membrane, t-buOOH is known to inhibit the capacitative Ca2+ influx pathway. Increased intracellular GSSG potentiated the inhibitory effect of t-buOOH on Ca2+ influx, thereby providing the first evidence that activity of the capacitative Ca2+ influx channel is sensitive to thiol reagents formed endogenously within the cell.



1995 ◽  
Vol 310 (1) ◽  
pp. 311-314 ◽  
Author(s):  
H J Sears ◽  
B Bennett ◽  
S Spiro ◽  
A J Thomson ◽  
D J Richardson

EPR spectroscopy has been successfully used to detect signals due to molybdenum (V) and ferric iron in intact cells of aerobically grown Paracoccus denitrificans. The signals are ascribed to the catalytic molybdenum centre and to the haem iron of the periplasmic nitrate reductase. These signals are absent from a mutant strain deficient in this enzyme. The Mo(V) signal is due to the High-g Split species which has been well characterized in the purified enzyme. This confirms that the High-g Split is the physiologically relevant signal of a number observed in the previous work on the purified enzyme.



1994 ◽  
Vol 40 (11) ◽  
pp. 916-921 ◽  
Author(s):  
Qitu Wu ◽  
Roger Knowles ◽  
Donald F. Niven

We studied the sensitivity to oxygen of the reductases involved in denitrification by whole cells and membrane fractions of Flexibacter canadensis. All of the nitrate reductase activity was found in the membrane fraction, suggesting that the nitrate reductase of F. canadensis is largely or entirely a membrane-bound enzyme. Methyl viologen and benzyl viologen were good electron donors to nitrate reductase in both whole cells and membrane fractions, whereas glucose and glycerol were effective in whole cells but, as expected, not in membrane fractions. Oxygen, generated by means of H2O2 plus catalase, inhibited the production of nitrite from nitrate by intact cells but not by membrane fractions, suggesting that O2 exerts its inhibitory effect at the level of nitrate transport rather than nitrate reduction. In intact cells, the rates of nitric oxide accumulation during reduction of nitrite in the presence of 20 μM carbonyl cyanide m-chlorophenylhydrazone, and consumption of nitric oxide and nitrous oxide, decreased as the concentration of H2O2 was increased. The concentrations of H2O2 giving 50% inhibition of reduction of nitrate and nitrite were 0.34 and 0.12 mM, respectively. In contrast, the rates of nitric oxide and nitrous oxide consumption were inhibited by only 36 and 32% at a concentration of H2O2 of 3.99 mM. These results indicate that the reduction of both nitric oxide and nitrous oxide is relatively tolerant to oxygen, and that nitrite reductase is much more sensitive to oxygen than the other reductases.Key words: nitrate reductase, nitrate transport, denitrification, O2 inhibition, Flexibacter canadensis.



Author(s):  
B.K. Ghosh

Periplasm of bacteria is the space outside the permeability barrier of plasma membrane but enclosed by the cell wall. The contents of this special milieu exterior could be regulated by the plasma membrane from the internal, and by the cell wall from the external environment of the cell. Unlike the gram-negative organism, the presence of this space in gram-positive bacteria is still controversial because it cannot be clearly demonstrated. We have shown the importance of some periplasmic bodies in the secretion of penicillinase from Bacillus licheniformis.In negatively stained specimens prepared by a modified technique (Figs. 1 and 2), periplasmic space (PS) contained two kinds of structures: (i) fibrils (F, 100 Å) running perpendicular to the cell wall from the protoplast and (ii) an array of vesicles of various sizes (V), which seem to have evaginated from the protoplast.



Sign in / Sign up

Export Citation Format

Share Document