scholarly journals The conversion of alanine into glutamine in guinea-pig renal cortex. Essential role of pyruvate carboxylase

1981 ◽  
Vol 200 (1) ◽  
pp. 27-33 ◽  
Author(s):  
M Forissier ◽  
G Baverel

1. The metabolism of L-alanine was studied in isolated guinea-pig kidney-cortex tubules. 2. In contrast with previous conclusions of Krebs [(1935) Biochem. J. 29, 1951-1969], glutamine was found to be the main carbon and nitrogenous product of the metabolism of alanine (at 1 and 5 mM). Glutamate and ammonia were only minor products. 3. At neither concentration of alanine was there accumulation of glucose, glycogen, pyruvate, lactate, aspartate or tricarboxylic acid-cycle intermediates. 4. Carbon-balance calculations and the release of 14CO2 from [U-14C]alanine indicate that oxidation of the alanine carbon skeleton occurred at both substrate concentrations. 5. A pathway involving alanine aminotransferase, glutamate dehydrogenase, glutamine synthetase, pyruvate dehydrogenase, pyruvate carboxylase and enzymes of the tricarboxylic acid cycle is proposed for the conversion of alanine into glutamine. 6. Strong evidence for this pathway was obtained by: (i) suppressing alanine removal by amino-oxyacetate, and inhibitor of transaminases, (ii) measuring the release of 14CO2 from [1-14C]alanine, (iii) the use of L-methionine DL-sulphoximine, an inhibitor of glutamine synthetase, which induced a large increase in ammonia release from alanine, and (iv) the use of fluoroacetate, an inhibitor of aconitase, which inhibited glutamine synthesis with concomitant accumulation of citrate from alanine. 7. In this pathway, the central role of pyruvate carboxylase, which explains the discrepancy between our results and those of Krebs (1935), was also demonstrated.

1990 ◽  
Vol 268 (2) ◽  
pp. 437-442 ◽  
Author(s):  
G Baverel ◽  
G Martin ◽  
C Michoudet

1. Glutamine was found to be the main carbon and nitrogen product of the metabolism of aspartate in isolated guinea-pig kidney-cortex tubules. Glutamate, ammonia and alanine were only minor products. 2. Carbon-balance calculations and the release of 14CO2 from [U-14C]aspartate indicate that oxidation of the aspartate carbon skeleton occurred. 3. A pathway involving aspartate aminotransferase, glutamate dehydrogenase, glutamine synthetase, phosphoenolpyruvate carboxykinase, pyruvate kinase, pyruvate dehydrogenase and enzymes of the tricarboxylic acid cycle is proposed for the conversion of aspartate into glutamine. 4. Evidence for this pathway was obtained by: (i) inhibiting aspartate removal by amino-oxyacetate, an inhibitor of transaminases, (ii) the use of methionine sulphoximine, an inhibitor of glutamine synthetase, which induced a large increase in ammonia release from aspartate, (iii) the use of quinolinate, an inhibitor of phosphoenolpyruvate carboxykinase, which inhibited glutamine synthesis from aspartate, (iv) the use of alpha-cyano-4-hydroxycinnamate, an inhibitor of the mitochondrial transport of pyruvate, which caused an accumulation of pyruvate from aspartate, and (v) the use of fluoroacetate, an inhibitor of aconitase, which inhibited glutamine synthesis with concomitant accumulation of citrate from aspartate.


1973 ◽  
Vol 132 (3) ◽  
pp. 553-557 ◽  
Author(s):  
M. B. Wilson

1. The synthesis of phosphoenolpyruvate and the O2 consumption from the tricarboxylic acid-cycle intermediates citrate, α-oxoglutarate, malate and succinate by guinea-pig mitochondria were compared. Malate was the most effective of these precursors; there was no synthesis of phosphoenolpyruvate from succinate. 2. The addition of palmitate, acetoacetate and ATP enhanced the synthesis of phosphoenolpyruvate from citrate and α-oxoglutarate. Palmitate and ATP increased the O2 consumption, whereas acetoacetate had no effect on this parameter. 3. Octanoate depressed the synthesis of phosphoenolpyruvate from citrate, α-oxoglutarate and malate and increased the O2 consumption. Pentenoic acid had no effect on phosphoenolpyruvate synthesis from any of the substrates used, although it increased the uptake of O2. These findings might be relevant to the control of gluconeogenesis in vivo.


1969 ◽  
Vol 15 (1) ◽  
pp. 57-60 ◽  
Author(s):  
Victor F. Lachica ◽  
Paul A. Hartman

The stimulatory effect of acetyl-CoA and the inhibitory effect by L-aspartate and some intermediates of the tricarboxylic acid cycle in the assimilation of CO2 by crude extracts of group D streptococci suggest that the pyruvate carboxylase of Streptococcus faecium and the phosphoenolpyruvate carboxylase of S. bovis are allosteric enzymes. This implies that these enzymes are sites for the control of the amount of aspartate and of the tricarboxylic acid cycle intermediates synthesized.


1982 ◽  
Vol 208 (3) ◽  
pp. 577-581 ◽  
Author(s):  
K J Peuhkurinen ◽  
E M Nuutinen ◽  
E P Pietiläinen ◽  
J K Hiltunen ◽  
I E Hassinen

The increase in the metabolite pool size of the tricarboxylic acid cycle in the isolated perfused rat heart after a decrease in the ATP consumption by KCl-induced arrest was used to study the anaplerotic mechanisms. During net anaplerosis the label incorporation into the tricarboxylic acid-cycle intermediates from [1-14C]pyruvate increased and occurred mainly by pathways not involving prior release of the label to CO2. A method for determination of the specific radioactivity of mitochondrial pyruvate was devised, and the results corroborated the notion that tissue alanine can be used as an indicator of the specific radioactivity of intracellular pyruvate.


2013 ◽  
Vol 129 (1) ◽  
pp. 107-119 ◽  
Author(s):  
Mussie G. Hadera ◽  
Olav B. Smeland ◽  
Tanya S. McDonald ◽  
Kah Ni Tan ◽  
Ursula Sonnewald ◽  
...  

1967 ◽  
Vol 105 (1) ◽  
pp. 333-341 ◽  
Author(s):  
Kirsti Lampiaho ◽  
E. Kulonen

1. The metabolism of incubated slices of sponge-induced granulation tissue, harvested 4–90 days after the implantation, was studied with special reference to the capacity of collagen synthesis and to the energy metabolism. Data are also given on the nucleic acid contents during the observation period. Three metabolic phases were evident. 2. The viability of the slices for the synthesis of collagen was studied in various conditions. Freezing and homogenization destroyed the capacity of the tissue to incorporate proline into collagen. 3. Consumption of oxygen reached the maximum at 30–40 days. There was evidence that the pentose phosphate cycle was important, especially during the phases of the proliferation and the involution. The formation of lactic acid was maximal at about 20 days. 4. The capacity to incorporate proline into collagen hydroxyproline in vitro was limited to a relatively short period at 10–30 days. 5. The synthesis of collagen was dependent on the supply of oxygen and glucose, which latter could be replaced in the incubation medium by other monosaccharides but not by the metabolites of glucose or tricarboxylic acid-cycle intermediates.


Sign in / Sign up

Export Citation Format

Share Document