scholarly journals Radiation-induced oxidative damage to the DNA-binding domain of the lactose repressor

2007 ◽  
Vol 403 (3) ◽  
pp. 463-472 ◽  
Author(s):  
Nathalie Gillard ◽  
Stephane Goffinont ◽  
Corinne Buré ◽  
Marie Davidkova ◽  
Jean-Claude Maurizot ◽  
...  

Understanding the cellular effects of radiation-induced oxidation requires the unravelling of key molecular events, particularly damage to proteins with important cellular functions. The Escherichia coli lactose operon is a classical model of gene regulation systems. Its functional mechanism involves the specific binding of a protein, the repressor, to a specific DNA sequence, the operator. We have shown previously that upon irradiation with γ-rays in solution, the repressor loses its ability to bind the operator. Water radiolysis generates hydroxyl radicals (OH· radicals) which attack the protein. Damage of the repressor DNA-binding domain, called the headpiece, is most likely to be responsible of this loss of function. Using CD, fluorescence spectroscopy and a combination of proteolytic cleavage with MS, we have examined the state of the irradiated headpiece. CD measurements revealed a dose-dependent conformational change involving metastable intermediate states. Fluorescence measurements showed a gradual degradation of tyrosine residues. MS was used to count the number of oxidations in different regions of the headpiece and to narrow down the parts of the sequence bearing oxidized residues. By calculating the relative probabilities of reaction of each amino acid with OH· radicals, we can predict the most probable oxidation targets. By comparing the experimental results with the predictions we conclude that Tyr7, Tyr12, Tyr17, Met42 and Tyr47 are the most likely hotspots of oxidation. The loss of repressor function is thus correlated with chemical modifications and conformational changes of the headpiece.

2001 ◽  
Vol 183 (9) ◽  
pp. 2947-2951 ◽  
Author(s):  
Douglas Hinerfeld ◽  
Gordon Churchward

ABSTRACT Purified integrase protein (Int) of the conjugative transposon Tn916 was shown, using nuclease protection experiments, to bind specifically to a site within the origin of conjugal transfer of the transposon, oriT. A sequence similar to the ends of the transposon that are bound by the C-terminal DNA-binding domain of Int was present in the protected region. However, Int binding tooriT required both the N- and C-terminal DNA-binding domains of Int, and the pattern of nuclease protection differed from that observed when Int binds to the transposon ends and flanking DNA. Binding of Int to oriT may be part of a mechanism to prevent premature conjugal transfer of Tn916 prior to excision from the donor DNA.


1996 ◽  
Vol 42 (1) ◽  
pp. 46-59
Author(s):  
Geoffrey S. Gottlieb ◽  
Michael A. Fennewald

The prokaryotic transposon Tn3 requires the transposase protein, as well as the cis-acting terminal inverted repeats (IRs), for transposition. The first step in the transposition process requires transposase binding to the IRs, as well as target site selection for element insertion. The primary aim of this study is to define the relationship between the structure of Tru3 transposase and its DNA binding functions. We have defined, by UV cross-linking, two broad regions of transposase that interact with DNA: a 70-kDa N-terminal domain and a 30-kDa C-terminal domain. The 70-kDa N-terminal domain encompasses the IR sequence-specific binding domain, as well as a nonspecific DNA binding domain that has been previously described. We have also defined, by UV cross-linking, a region in the nonspecific DNA binding domain centered at amino acids 376 and 381 that is in contact with DNA. We have used site-directed mutagenesis of amino acids 376 and 381 to help delineate the function of this region of the transposase protein. Mutations in this region reduce transposition frequency to 30–40% of the wild type. These mutations reduce nonspecific DNA binding three- to four-fold but do not appear to affect specific binding to the IR. Transposition immunity is unaffected by mutations in the nonspecific DNA binding domain. This suggests that this region may be involved in target site selection.Key words: transposon, Tn3, DNA–protein cross-linking, UV cross-linking, transposase.


Biochemistry ◽  
2011 ◽  
Vol 50 (29) ◽  
pp. 6289-6291 ◽  
Author(s):  
Edward K. Mandell ◽  
Amy D. Gelinas ◽  
Deborah S. Wuttke ◽  
Victoria Lundblad

2020 ◽  
Vol 477 (20) ◽  
pp. 4001-4019
Author(s):  
Pankaj Vilas Jadhav ◽  
Vikrant Kumar Sinha ◽  
Saurabh Chugh ◽  
Chaithanya Kotyada ◽  
Digvijay Bachhav ◽  
...  

The toxin–antitoxin (TA) systems are small operon systems that are involved in important physiological processes in bacteria such as stress response and persister cell formation. Escherichia coli HigBA complex belongs to the type II TA systems and consists of a protein toxin called HigB and a protein antitoxin called HigA. The toxin HigB is a ribosome-dependent endoribonuclease that cleaves the translating mRNAs at the ribosome A site. The antitoxin HigA directly binds the toxin HigB, rendering the HigBA complex catalytically inactive. The existing biochemical and structural studies had revealed that the HigBA complex forms a heterotetrameric assembly via dimerization of HigA antitoxin. Here, we report a high-resolution crystal structure of E. coli HigBA complex that revealed a well-ordered DNA binding domain in HigA antitoxin. Using SEC-MALS and ITC methods, we have determined the stoichiometry of complex formation between HigBA and a 33 bp DNA and report that HigBA complex as well as HigA homodimer bind to the palindromic DNA sequence with nano molar affinity. Using E. coli growth assays, we have probed the roles of key, putative active site residues in HigB. Spectroscopic methods (CD and NMR) and molecular dynamics simulations study revealed intrinsic dynamic in antitoxin in HigBA complex, which may explain the large conformational changes in HigA homodimer in free and HigBA complexes observed previously. We also report a truncated, heterodimeric form of HigBA complex that revealed possible cleavage sites in HigBA complex, which can have implications for its cellular functions.


Sign in / Sign up

Export Citation Format

Share Document