Prototype chicken galectins revisited: characterization of a third protein with distinctive hydrodynamic behaviour and expression pattern in organs of adult animals

2007 ◽  
Vol 409 (2) ◽  
pp. 591-599 ◽  
Author(s):  
Herbert Kaltner ◽  
Dolores Solís ◽  
Jürgen Kopitz ◽  
Martin Lensch ◽  
Michaela Lohr ◽  
...  

Prototype galectins are versatile modulators of cell adhesion and growth via their reactivity to certain carbohydrate and protein ligands. These functions and the galectins' marked developmental regulation explain their attractiveness as models to dissect divergent evolution after gene duplication. Only two members have so far been assumed to constitute this group in chicken, namely the embryonic muscle/liver form {C-16 or CLL-I [16 kDa; chicken lactose lectin, later named CG-16 (chicken galectin-16)]} and the embryonic skin/intestine form (CLL-II or C-14; later named CG-14). In the present study, we report on the cloning and expression of a third prototype CG. It has deceptively similar electrophoretic mobility compared with recombinant C-14, the protein first isolated from embryonic skin, and turned out to be identical with the intestinal protein. Hydrodynamic properties unusual for a homodimeric galectin and characteristic traits in the proximal promoter region set it apart from the two already known CGs. Their structural vicinity to galectin-1 prompts their classification as CG-1A (CG-16)/CG-1B (CG-14), whereas sequence similarity to mammalian galectin-2 gives reason to refer to the intestinal protein as CG-2. The expression profiling by immunohistochemistry with specific antibodies discerned non-overlapping expression patterns for the three CGs in several organs of adult animals. Overall, the results reveal a network of three prototype galectins in chicken.

2000 ◽  
Vol 15 (1) ◽  
pp. 26-32 ◽  
Author(s):  
M. Cattaneo ◽  
R. Orlandi ◽  
C. Ronchini ◽  
P. Granelli ◽  
G. Malferrari ◽  
...  

We have previously reported on the isolation and chromosomal mapping of a novel human gene (SEL1L), which shows sequence similarity to sel-1, an extragenic suppressor of C. elegans. sel-1 functions as a negative regulator of lin-12 activity, the latter being implicated in the control of diverse cellular differentiation events. In the present study we compare the expression patterns of SEL1L and TAN-1, the human ortholog of lin-12 in normal and neoplastic cells. We found that, whereas both genes are expressed in fetal tissues at similar levels, they are differentially expressed in normal adult and neoplastic cells. In normal adult cells SEL1L is generally present at very low levels; only in the cells of the pancreas does it show maximum expression. By contrast, SEL1L is generally well represented in most neoplastic cells but not in those of pancreatic and gastric carcinomas, where transcription is either downregulated or completely repressed. TAN-1 on the other hand is well represented in almost all normal and neoplastic cells, with very few exceptions. Our observations suggest that SEL1L is presumably implicated in pancreatic and gastric carcinogenesis and that, along with TAN-1, it is very important for normal cell function. Alterations in the expression of SEL1L may be used as a prognostic marker for gastric and pancreatic cancers.


Development ◽  
1998 ◽  
Vol 125 (12) ◽  
pp. 2171-2180 ◽  
Author(s):  
J.M. Kalb ◽  
K.K. Lau ◽  
B. Goszczynski ◽  
T. Fukushige ◽  
D. Moons ◽  
...  

The C. elegans Ce-fkh-1 gene has been cloned on the basis of its sequence similarity to the winged-helix DNA binding domain of the Drosophila fork head and mammalian HNF-3alpha, beta, gamma genes, and mutations in the zygotically active pha-4 gene have been shown to block formation of the pharynx (and rectum) at an early stage in embryogenesis. In the present paper, we show that Ce-fkh-1 and pha-4 are the same gene. We show that PHA-4 protein is present in nuclei of essentially all pharyngeal cells, of all five cell types. PHA-4 protein first appears close to the point at which a cell lineage will produce only pharyngeal cells, independently of cell type. We show that PHA-4 binds directly to a ‘pan-pharyngeal enhancer element’ previously identified in the promoter of the pharyngeal myosin myo-2 gene; in transgenic embryos, ectopic PHA-4 activates ectopic myo-2 expression. We also show that ectopic PHA-4 can activate ectopic expression of the ceh-22 gene, a pharyngeal-specific NK-2-type homeodomain protein previously shown to bind a muscle-specific enhancer near the PHA-4 binding site in the myo-2 promoter. We propose that it is the combination of pha-4 and regulatory molecules such as ceh-22 that produces the specific gene expression patterns during pharynx development. Overall, pha-4 can be described as an ‘organ identity factor’, completely necessary for organ formation, present in all cells of the organ from the earliest stages, capable of integrating upstream developmental pathways (in this case, the two distinct pathways that produce the anterior and posterior pharynx) and participating directly in the transcriptional regulation of organ specific genes. Finally, we note that the distribution of PHA-4 protein in C. elegans embryos is remarkably similar to the distribution of the fork head protein in Drosophila embryos: high levels in the foregut/pharynx and hindgut/rectum; low levels in the gut proper. Moreover, we show that pha-4 expression in the C. elegans gut is regulated by elt-2, a C. elegans gut-specific GATA-factor and possible homolog of the Drosophila gene serpent, which influences fork head expression in the fly gut. Overall, our results provide evidence for a highly conserved pathway regulating formation of the digestive tract in all (triploblastic) metazoa.


2019 ◽  
Author(s):  
Dan Ramirez ◽  
Vivek Kohar ◽  
Ataur Katebi ◽  
Mingyang Lu

AbstractEpithelial-mesenchymal transition (EMT) plays a crucial role in embryonic development and tumorigenesis. Although EMT has been extensively studied with both computational and experimental methods, the gene regulatory mechanisms governing the transition are not yet well understood. Recent investigations have begun to better characterize the complex phenotypic plasticity underlying EMT using a computational systems biology approach. Here, we analyzed recently published single-cell RNA sequencing data from E9.5 to E11.5 mouse embryonic skin cells and identified the gene expression patterns of both epithelial and mesenchymal phenotypes, as well as a clear hybrid state. By integrating the scRNA-seq data and gene regulatory interactions from the literature, we constructed a gene regulatory network model governing the decision-making of EMT in the context of the developing mouse embryo. We simulated the network using a recently developed mathematical modeling method, named RACIPE, and observed three distinct phenotypic states whose gene expression patterns can be associated with the epithelial, hybrid, and mesenchymal states in the scRNA-seq data. Additionally, the model is in agreement with published results on the composition of EMT phenotypes and regulatory networks. We identified Wnt signaling as a major pathway in inducing the EMT and its role in driving cellular state transitions during embryonic development. Our findings demonstrate a new method of identifying and incorporating tissue-specific regulatory interactions into gene regulatory network modeling.Author SummaryEpithelial-mesenchymal transition (EMT) is a cellular process wherein cells become disconnected from their surroundings and acquire the ability to migrate through the body. EMT has been observed in biological contexts including development, wound healing, and cancer, yet the regulatory mechanisms underlying it are not well understood. Of particular interest is a purported hybrid state, in which cells can retain some adhesion to their surroundings but also show mesenchymal traits. Here, we examine the prevalence and composition of the hybrid state in the context of the embryonic mouse, integrating gene regulatory interactions from published experimental results as well as from the specific single cell RNA sequencing dataset of interest. Using mathematical modeling, we simulated a regulatory network based on these sources and aligned the simulated phenotypes with those in the data. We identified a hybrid EMT phenotype and revealed the inducing effect of Wnt signaling on EMT in this context. Our regulatory network construction process can be applied beyond EMT to illuminate the behavior of any biological phenomenon occurring in a specific context, allowing better identification of therapeutic targets and further research directions.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256599
Author(s):  
Pooja Parishar ◽  
Neha Sehgal ◽  
Soumya Iyengar

The endogenous opioid system is evolutionarily conserved across reptiles, birds and mammals and is known to modulate varied brain functions such as learning, memory, cognition and reward. To date, most of the behavioral and anatomical studies in songbirds have mainly focused on μ-opioid receptors (ORs). Expression patterns of δ-ORs in zebra finches, a well-studied species of songbird have not yet been reported, possibly due to the high sequence similarity amongst different opioid receptors. In the present study, a specific riboprobe against the δ-OR mRNA was used to perform fluorescence in situ hybridization (FISH) on sections from the male zebra finch brain. We found that δ-OR mRNA was expressed in different parts of the pallium, basal ganglia, cerebellum and the hippocampus. Amongst the song control and auditory nuclei, HVC (abbreviation used as a formal name) and NIf (nucleus interfacialis nidopallii) strongly express δ-OR mRNA and stand out from the surrounding nidopallium. Whereas the expression of δ-OR mRNA is moderate in LMAN (lateral magnocellular nucleus of the anterior nidopallium), it is low in the MSt (medial striatum), Area X, DLM (dorsolateral nucleus of the medial thalamus), RA (robust nucleus of the arcopallium) of the song control circuit and Field L, Ov (nucleus ovoidalis) and MLd (nucleus mesencephalicus lateralis, pars dorsalis) of the auditory pathway. Our results suggest that δ-ORs may be involved in modulating singing, song learning as well as spatial learning in zebra finches.


Gene ◽  
2005 ◽  
Vol 346 ◽  
pp. 195-203 ◽  
Author(s):  
Martine Maïbèche-Coisne ◽  
Christine Merlin ◽  
Marie-Christine François ◽  
Patrick Porcheron ◽  
Emmanuelle Jacquin-Joly

Genome ◽  
1995 ◽  
Vol 38 (3) ◽  
pp. 586-600 ◽  
Author(s):  
Anna S. Akhmanova ◽  
Petra C. T. Bindels ◽  
Jie Xu ◽  
Koos Miedema ◽  
Hannie Kremer ◽  
...  

We demonstrate that in Drosophila melanogaster the histone H3.3 replacement variant is encoded by two genes, H3.3A and H3.3B. We have isolated cDNA clones for H3.3A and cDNA and genomic clones for H3.3B. The genes encode exactly the same protein but are widely divergent in their untranslated regions (UTR). Both genes are expressed in embryos and adults; they are expressed in the gonads as well as in somatic tissues of the flies. However, only one of them, H3.3A, shows strong testes expression. The 3′ UTR of the H3.3A gene is relatively short (~250 nucleotides (nt)). H3.3B transcripts can be processed at several polyadenylation sites, the longest with a 3′ UTR of more than 1500 nt. The 3′ processing sites, preferentially used in the gonads and somatic tissues, are different. We have also isolated the Drosophila hydei homologues of the two H3.3 genes. They are quite similar to the D. melanogaster genes in their expression patterns. However, in contrast to their vertebrate counterparts, which are highly conserved in their noncoding regions, the Drosophila genes display only limited sequence similarity in these regions.Key words: H3.3 histone variant, Drosophila, sequence comparison, alternative polyadenylation, testis expression.


1999 ◽  
Vol 181 (13) ◽  
pp. 4071-4075 ◽  
Author(s):  
Scott S. Crupper ◽  
Veronica Worrell ◽  
George C. Stewart ◽  
John J. Iandolo

ABSTRACT A cadmium resistance gene, designated cadD, has been identified in and cloned from the Staphylococcus aureusplasmid pRW001. The gene is part of a two-component operon which contains the resistance gene cadD and an inactive regulatory gene, cadX*. A high degree of sequence similarity was observed between cadD and thecadB-like gene from S. lugdunensis, but no significant similarity was found with either cadA orcadB from the S. aureus plasmids pI258 and pII147. The positive regulatory gene cadX* is identical tocadX from pLUG10 over a stretch of 78 codons beginning at the N terminus, but it is truncated at this point and inactive. Sequence analysis showed that the cadmium resistance operon resides on a 3,972-bp element that is flanked by direct repeats of IS257. The expression of cadD in S. aureus and Bacillus subtilis resulted in low-level resistance to cadmium; in contrast, cadA andcadB from S. aureus induced higher level resistance. However, when the truncated version ofcadX contained in pRW001 is complemented intrans with cadX from plasmid pLUG10, resistance increased approximately 10-fold suggesting that the cadmium resistance operons from pRW001 and pLUG10 are evolutionarily related. Moreover, the truncated version ofcadX contained in pRW001 is nonfunctional and may have been generated by deletion during recombination to acquire the cadmium resistance element.


Sign in / Sign up

Export Citation Format

Share Document