embryonic skin
Recently Published Documents


TOTAL DOCUMENTS

135
(FIVE YEARS 4)

H-INDEX

27
(FIVE YEARS 0)

2021 ◽  
Vol 12 ◽  
Author(s):  
Oindrila Bhattacharjee ◽  
Uttkarsh Ayyangar ◽  
Ambika S. Kurbet ◽  
Vairavan Lakshmanan ◽  
Dasaradhi Palakodeti ◽  
...  

Macrophages are highly responsive to the environmental cues and are the primary responders to tissue stress and damage. While much is known about the role of macrophages during inflammatory disease progression; the initial series of events that set up the inflammation remains less understood. In this study, we use next generation sequencing (NGS) of embryonic skin macrophages and the niche cells - skin epithelia and stroma in the epidermis specific knockout of integrin beta 1 (Itgβ1) model to uncover specific roles of each cell type and identify how these cell types communicate to initiate the sterile inflammatory response. We demonstrate that while the embryonic skin fibroblasts in the Itgβ1 knockout skin are relatively inactive, the keratinocytes and macrophages are the critical responders to the sterile inflammatory cues. The epidermis expresses damage associated molecular patterns (DAMPs), stress response genes, pro-inflammatory cytokines, and chemokines that aid in eliciting the inflammatory response. The macrophages, in-turn, respond by acquiring enhanced M2-like characteristics expressing ECM remodeling and matrisome signatures that exacerbate the basement membrane disruption. Depletion of macrophages by blocking the CSF1 receptor (CSF1R) results in improved basement membrane integrity and reduced ECM remodeling activity in the KO skin. Further, blocking the skin inflammation with celecoxib reveals that the acquired fate of macrophages in the KO skin is dependent on its interaction with the epidermal compartment through COX2 dependent cytokine production. Taken together, our study highlights a critical crosstalk between the epithelia and the dermal macrophages that shapes macrophage fate and initiates sterile inflammation in the skin. The insights gained from our study can be extrapolated to other inflammatory disorders to understand the early events that set up the disease.



2021 ◽  
Vol 22 (15) ◽  
pp. 8235
Author(s):  
Gink N. Yang ◽  
Parinaz Ahangar ◽  
Xanthe L. Strudwick ◽  
Zlatko Kopecki ◽  
Allison J. Cowin

Epidermal progenitor cells divide symmetrically and asymmetrically to form stratified epidermis and hair follicles during late embryonic development. Flightless I (Flii), an actin remodelling protein, is implicated in Wnt/β-cat and integrin signalling pathways that govern cell division. This study investigated the effect of altering Flii on the divisional orientation of epidermal progenitor cells (EpSCs) in the basal layer during late murine embryonic development and early adolescence. The effect of altering Flii expression on asymmetric vs. symmetric division was assessed in vitro in adult human primary keratinocytes and in vivo at late embryonic development stages (E16, E17 and E19) as well as adolescence (P21 day-old) in mice with altered Flii expression (Flii knockdown: Flii+/−, wild type: WT, transgenic Flii overexpressing: FliiTg/Tg) using Western blot and immunohistochemistry. Flii+/− embryonic skin showed increased asymmetrical cell division of EpSCs with an increase in epidermal stratification and elevated talin, activated-Itgb1 and Par3 expression. FliiTg/Tg led to increased symmetrical cell division of EpSCs with increased cell proliferation rate, an elevated epidermal SOX9, Flap1 and β-cat expression, a thinner epidermis, but increased hair follicle number and depth. Flii promotes symmetric division of epidermal progenitor cells during murine embryonic development.



2021 ◽  
Vol 27 (4) ◽  
pp. 1-9
Author(s):  
Hongli Chen ◽  
Shujie Sun ◽  
Zhenhua Pan ◽  
Mengru Tu ◽  
Jia Shi ◽  
...  


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chen Jiang ◽  
Ahsan Javed ◽  
Laura Kaiser ◽  
Michele M. Nava ◽  
Rui Xu ◽  
...  

AbstractThe precise spatiotemporal control of cell proliferation is key to the morphogenesis of epithelial tissues. Epithelial cell divisions lead to tissue crowding and local changes in force distribution, which in turn suppress the rate of cell divisions. However, the molecular mechanisms underlying this mechanical feedback are largely unclear. Here, we identify a critical requirement of B-plexin transmembrane receptors in the response to crowding-induced mechanical forces during embryonic skin development. Epidermal stem cells lacking B-plexins fail to sense mechanical compression, resulting in disinhibition of the transcriptional coactivator YAP, hyperproliferation, and tissue overgrowth. Mechanistically, we show that B-plexins mediate mechanoresponses to crowding through stabilization of adhesive cell junctions and lowering of cortical stiffness. Finally, we provide evidence that the B-plexin-dependent mechanochemical feedback is also pathophysiologically relevant to limit tumor growth in basal cell carcinoma, the most common type of skin cancer. Our data define a central role of B-plexins in mechanosensation to couple cell density and cell division in development and disease.



2020 ◽  
Author(s):  
Katelyn Mika ◽  
Alexander S. Okamoto ◽  
Neil H. Shubin ◽  
David B. Mark Welch

AbstractMicrobial transmission from parent to offspring is hypothesized to be universal in vertebrates. However, evidence for this is limited as many clades remain unexamined. Chondrichthyes, as one of the earliest–branching vertebrate lineages, provide an opportunity to investigate the phylogenetic breadth of this hypothesis. To assess the potential for bacterial transmission in an oviparous chondrichthyan, we used 16S rRNA amplicon sequencing to characterize the microbial communities associated with the skin, gill, and egg capsule of the little skate, Leucoraja erinacea, at six points during ontogeny. We identify site-specific microbiomes dominated by the bacterial phyla Proteobacteria and Bacteroidetes, a composition similar to, but distinct from, that of other chondrichthyans. Our data reveal that the skate egg capsule harbors a highly diverse bacterial community–particularly on the internal surface of the capsule–and facilitates intergenerational microbial transfer to the offspring. Embryonic skin and external gill tissues host similar bacterial communities; the skin and gill communities later diverge as the internal gills and skin denticles develop. Our study is the first exploration of the chondrichthyan microbiome throughout ontogeny and provides the first evidence of vertical transmission in this group, which may be the primary mechanism for the signature of phylosymbiosis previously observed in elasmobranchs.



Genome ◽  
2020 ◽  
Vol 63 (12) ◽  
pp. 615-628
Author(s):  
Xiaoya Yuan ◽  
Qixin Guo ◽  
Hao Bai ◽  
Yong Jiang ◽  
Yi Zhang ◽  
...  

Skin and feather follicle morphogenesis are important processes for duck development; however, the mechanisms underlying morphogenesis at the embryonic stage remain unclear. To improve the understanding of these processes, we used transcriptome and weighted gene co-expression network analyses to identify the critical genes and pathways involved in duck skin development. Five modules were found to be the most related to five key stages in skin development that span from embryonic day 8 (E8) to postnatal day 7 (D7). Using STEM software, 6519 genes from five modules were clustered into 10 profiles to reveal key genes. Above all, we obtained several key module genes including WNT3A, NOTCH1, SHH, BMP2, NOG, SMAD3, and TGFβ2. Furthermore, we revealed that several pathways play critical roles throughout the skin development process, including the Wnt pathway and cytoskeletal rearrangement-related pathways, whereas others are involved in specific stages of skin development, such as the Notch, Hedgehog, and TGF-beta signaling pathways. Overall, this study identified the pathways and genes that play critical roles in skin development, which may provide a basis for high-quality down-type meat duck breeding.



2020 ◽  
Author(s):  
Chen Jiang ◽  
Ahsan Javed ◽  
Laura Kaiser ◽  
Michele M. Nava ◽  
Dandan Zhao ◽  
...  

ABSTRACTThe precise spatiotemporal control of cell proliferation is key to the morphogenesis of epithelial tissues. Epithelial cell divisions lead to tissue crowding and local changes in force distribution, which in turn suppress the rate of cell divisions. However, the molecular mechanisms underlying this mechanical feedback are largely unclear. Here, we identify a critical requirement of B-plexin transmembrane receptors in the response to crowding-induced mechanical forces during embryonic skin development. Epidermal stem cells lacking B-plexins fail to sense mechanical compression, resulting in disinhibition of the transcriptional coactivator YAP, hyperproliferation, and tissue overgrowth. Mechanistically, we show that B-plexins mediate mechanoresponses to crowding through stabilization of adhesive cell junctions and lowering of cortical stiffness. Finally, we provide evidence that the B-plexin-dependent mechanochemical feedback is also pathophysiologically relevant to limit tumor growth in basal cell carcinoma, the most common type of skin cancer. Our data uncover a central role of B-plexins in mechanosensation to couple cell density and cell division in development and disease.



2019 ◽  
Author(s):  
Dan Ramirez ◽  
Vivek Kohar ◽  
Ataur Katebi ◽  
Mingyang Lu

AbstractEpithelial-mesenchymal transition (EMT) plays a crucial role in embryonic development and tumorigenesis. Although EMT has been extensively studied with both computational and experimental methods, the gene regulatory mechanisms governing the transition are not yet well understood. Recent investigations have begun to better characterize the complex phenotypic plasticity underlying EMT using a computational systems biology approach. Here, we analyzed recently published single-cell RNA sequencing data from E9.5 to E11.5 mouse embryonic skin cells and identified the gene expression patterns of both epithelial and mesenchymal phenotypes, as well as a clear hybrid state. By integrating the scRNA-seq data and gene regulatory interactions from the literature, we constructed a gene regulatory network model governing the decision-making of EMT in the context of the developing mouse embryo. We simulated the network using a recently developed mathematical modeling method, named RACIPE, and observed three distinct phenotypic states whose gene expression patterns can be associated with the epithelial, hybrid, and mesenchymal states in the scRNA-seq data. Additionally, the model is in agreement with published results on the composition of EMT phenotypes and regulatory networks. We identified Wnt signaling as a major pathway in inducing the EMT and its role in driving cellular state transitions during embryonic development. Our findings demonstrate a new method of identifying and incorporating tissue-specific regulatory interactions into gene regulatory network modeling.Author SummaryEpithelial-mesenchymal transition (EMT) is a cellular process wherein cells become disconnected from their surroundings and acquire the ability to migrate through the body. EMT has been observed in biological contexts including development, wound healing, and cancer, yet the regulatory mechanisms underlying it are not well understood. Of particular interest is a purported hybrid state, in which cells can retain some adhesion to their surroundings but also show mesenchymal traits. Here, we examine the prevalence and composition of the hybrid state in the context of the embryonic mouse, integrating gene regulatory interactions from published experimental results as well as from the specific single cell RNA sequencing dataset of interest. Using mathematical modeling, we simulated a regulatory network based on these sources and aligned the simulated phenotypes with those in the data. We identified a hybrid EMT phenotype and revealed the inducing effect of Wnt signaling on EMT in this context. Our regulatory network construction process can be applied beyond EMT to illuminate the behavior of any biological phenomenon occurring in a specific context, allowing better identification of therapeutic targets and further research directions.



PLoS Biology ◽  
2019 ◽  
Vol 17 (10) ◽  
pp. e3000448
Author(s):  
Richard Bailleul ◽  
Camille Curantz ◽  
Carole Desmarquet-Trin Dinh ◽  
Magdalena Hidalgo ◽  
Jonathan Touboul ◽  
...  


Genes ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 351 ◽  
Author(s):  
Cornelius Tlotliso Sello ◽  
Chang Liu ◽  
Yongfeng Sun ◽  
Petunia Msuthwana ◽  
Jingtao Hu ◽  
...  

Geese feather production and the quality of downy feathers are additional economically important traits in the geese industry. However, little information is available about the molecular mechanisms fundamental to feather formation and the quality of feathers in geese. This study conducted de novo transcriptome sequencing analysis of two related geese species using the Illumina 4000 platform to determine the genes involved in embryonic skin feather follicle development. A total of 165,564,278 for Anser anser and 144,595,262 for Anser cygnoides clean reads were generated, which were further assembled into 77,134 unigenes with an average length of 906 base pairs in Anser anser and 66,041 unigenes with an average length of 922 base pairs in Anser cygnoides. To recognize the potential regulatory roles of differentially expressed genes (DEGs) during geese embryonic skin feather follicle development, the obtained unigenes were annotated to Gene Ontology (GO), Eukaryotic Orthologous Groups (KOG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) for functional analysis. In both species, GO and KOG had shown similar distribution patterns during functional annotation except for KEGG, which showed significant variation in signaling enrichment. Anser asnser was significantly enriched in the calcium signaling pathway, whereas Anser cygnoides was significantly enriched with glycerolipid metabolism. Further analysis indicated that 14,227 gene families were conserved between the species, among which a total of 20,715 specific gene families were identified. Comparative RNA-Seq data analysis may reveal inclusive knowledge to assist in the identification of genetic regulators at a molecular level to improve feather quality production in geese and other poultry species.



Sign in / Sign up

Export Citation Format

Share Document