scholarly journals Identification of broad-based HIV-1 protease inhibitors from combinatorial libraries

2010 ◽  
Vol 429 (3) ◽  
pp. 527-532 ◽  
Author(s):  
Max W. Chang ◽  
Michael J. Giffin ◽  
Rolf Muller ◽  
Jeremiah Savage ◽  
Ying C. Lin ◽  
...  

Clinically approved inhibitors of the HIV-1 protease function via a competitive mechanism. A particular vulnerability of competitive inhibitors is their sensitivity to increases in substrate concentration, as may occur during virion assembly, budding and processing into a mature infectious viral particle. Advances in chemical synthesis have led to the development of new high-diversity chemical libraries using rapid in-solution syntheses. These libraries have been shown previously to be effective at disrupting protein–protein and protein–nucleic acid interfaces. We have screened 44000 compounds from such a library to identify inhibitors of the HIV-1 protease. One compound was identified that inhibits wild-type protease, as well as a drug-resistant protease with six mutations. Moreover, analysis of this compound suggests an allosteric non-competitive mechanism of inhibition and may represent a starting point for an additional strategy for anti-retroviral therapy.

1999 ◽  
Vol 73 (9) ◽  
pp. 7671-7677 ◽  
Author(s):  
Dong Sung An ◽  
Kouki Morizono ◽  
Qi-Xiang Li ◽  
Si Hua Mao ◽  
Stephanie Lu ◽  
...  

ABSTRACT Recently, gene therapy vectors based upon the human immunodeficiency virus type 1 (HIV-1) genome have been developed. Here, we create an HIV-1 vector which is defective for all HIV-1 genes, but which maintains cis-acting elements required for efficient packaging, infection, and expression. In T cells transduced by this vector, vector expression is low but efficiently induced following HIV-1 infection. Remarkably, although the HIV-1 vector does not contain specific anti-HIV-1 therapeutic genes, the presence of the vector alone is sufficient to inhibit the spread of HIV-1 infection. The mechanism of inhibition is likely to be at the level of competition for limiting substrates required for either efficient packaging or reverse transcription, thereby selecting against propagation of wild-type HIV-1. These results provide proof of a concept for potential application of a novel HIV-1 vector in HIV-1 disease.


2020 ◽  
Vol 18 ◽  
Author(s):  
J. Singh ◽  
L. Ronsard ◽  
M. Pandey ◽  
R. Kapoor ◽  
V.G. Ramachandran ◽  
...  

Background: HIV-1 Nef is an important accessory protein with multiple effector functions. Genetic studies of HIV-1 Nef gene shows extensive genetic diversity and the functional studies have been carried out mostly with Nef derived from regions dominated by subtype B (North America & Europe). Objective: This study was carried out to characterize genetic variations of the Nef gene from HIV-1 infected individuals from North-India and to find out their functional implications. Methods: The unique representative variants were sub-cloned in eukaryotic expression vector and further characterized with respect to their ability to down regulate cell surface expression of CD4 and MHC-1molecules. Results: The phylogenetic analysis of Nef variants revealed sequence similarity with either consensus subtype B or B/C recombinants. Boot scan analysis of some of our variants showed homology to B/C recombinant and some to wild type Nef B. Extensive variations were observed in most of the variants. The dN/dS ratio revealed 80% purifying selection and 20% diversifying selection implying the importance of mutations in Nef variants. Intracellular stability of Nef variants differed greatly when compared with wild type Nef B and C. There were some variants that possessed mutations in the functional domains of Nef and responsible for its differential CD4 and MHC-1 down regulation activity. Conclusion: We observed enhanced biological activities in some of the variants, perhaps arising out of amino acid substitutions in their functional domains. The CD4 and MHC-1 down-regulation activity of Nef is likely to confer immense survival advantage allowing the most rare genotype in a population to become the most abundant after a single selection event.


Author(s):  
Arash Soltani ◽  
Seyed Isaac Hashemy ◽  
Farnaz Zahedi Avval ◽  
Houshang Rafatpanah ◽  
Seyed Abdolrahim Rezaee ◽  
...  

Introoduction: Inhibition of the reverse transcriptase (RT) enzyme of human immunodeficiency virus (HIV) by low molecular weight inhibitors is still an active area of research. Here, protein-ligand interactions and possible binding modes of novel compounds with the HIV-1 RT binding pocket (the wild-type as well as Y181C and K103N mutants) were obtained and discussed. Methods: A molecular fragment-based approach using FDA-approved drugs were followed to design novel chemical derivatives using delavirdine, efavirenz, etravirine and rilpivirine as the scaffolds. The drug-likeliness of the derivatives was evaluated using Swiss-ADME. Then the parent molecule and derivatives were docked into the binding pocket of related crystal structures (PDB ID: 4G1Q, 1IKW, 1KLM and 3MEC). Genetic Optimization for Ligand Docking (GOLD) Suite 5.2.2 software was used for docking and the results analyzed in the Discovery Studio Visualizer 4. A derivative was chosen for further analysis, if it passed drug-likeliness and the docked energy was more favorable than that of its parent molecule. Out of the fifty-seven derivatives, forty-eight failed in druglikeness screening by Swiss-ADME or in docking stage. Results: The final results showed that the selected compounds had higher predicted binding affinities than their parent scaffolds in both wild-type and the mutants. Binding energy improvement was higher for the structures designed based on second-generation NNRTIs (etravirine and rilpivirine) than the first-generation NNRTIs (delavirdine and efavirenz). For example, while the docked energy for rilpivirine was -51 KJ/mol, it was improved for its derivatives RPV01 and RPV15 up to -58.3 and -54.5 KJ/mol, respectively. Conclusion: In this study, we have identified and proposed some novel molecules with improved binding capacity for HIV RT using fragment-based approach.


mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Gurvani B. Singh ◽  
Hyewon Byun ◽  
Almas F. Ali ◽  
Frank Medina ◽  
Dennis Wylie ◽  
...  

ABSTRACT Complex human-pathogenic retroviruses cause high morbidity and mortality worldwide, but resist antiviral drugs and vaccine development due to evasion of the immune response. A complex retrovirus, mouse mammary tumor virus (MMTV), requires replication in B and T lymphocytes for mammary gland transmission and is antagonized by the innate immune restriction factor murine Apobec3 (mA3). To determine whether the regulatory/accessory protein Rem affects innate responses to MMTV, a splice-donor mutant (MMTV-SD) lacking Rem expression was injected into BALB/c mice. Mammary tumors induced by MMTV-SD had a lower proviral load, lower incidence, and longer latency than mammary tumors induced by wild-type MMTV (MMTV-WT). MMTV-SD proviruses had many G-to-A mutations on the proviral plus strand, but also C-to-T transitions within WRC motifs. Similarly, a lymphomagenic MMTV variant lacking Rem expression showed decreased proviral loads and increased WRC motif mutations relative to those in wild-type-virus-induced tumors, consistent with activation-induced cytidine deaminase (AID) mutagenesis in lymphoid cells. These mutations are typical of the Apobec family member AID, a B-cell-specific mutagenic protein involved in antibody variable region hypermutation. In contrast, mutations in WRC motifs and proviral loads were similar in MMTV-WT and MMTV-SD proviruses from tumors in AID-insufficient mice. AID was not packaged in MMTV virions. Rem coexpression in transfection experiments led to AID proteasomal degradation. Our data suggest that rem specifies a human-pathogenic immunodeficiency virus type 1 (HIV-1) Vif-like protein that inhibits AID and antagonizes innate immunity during MMTV replication in lymphocytes. IMPORTANCE Complex retroviruses, such as human-pathogenic immunodeficiency virus type 1 (HIV-1), cause many human deaths. These retroviruses produce lifelong infections through viral proteins that interfere with host immunity. The complex retrovirus mouse mammary tumor virus (MMTV) allows for studies of host-pathogen interactions not possible in humans. A mutation preventing expression of the MMTV Rem protein in two different MMTV strains decreased proviral loads in tumors and increased viral genome mutations typical of an evolutionarily ancient enzyme, AID. Although the presence of AID generally improves antibody-based immunity, it may contribute to human cancer progression. We observed that coexpression of MMTV Rem and AID led to AID destruction. Our results suggest that Rem is the first known protein inhibitor of AID and that further experiments could lead to new disease treatments.


2015 ◽  
Vol 59 ◽  
pp. 107-116 ◽  
Author(s):  
Valderes De Conto ◽  
Antônio S.K. Braz ◽  
David Perahia ◽  
Luis P.B. Scott
Keyword(s):  

2007 ◽  
Vol 82 (1) ◽  
pp. 138-147 ◽  
Author(s):  
Mamoru Fujiwara ◽  
Junko Tanuma ◽  
Hirokazu Koizumi ◽  
Yuka Kawashima ◽  
Kazutaka Honda ◽  
...  

ABSTRACT There is much evidence that in human immunodeficiency virus type 1 (HIV-1)-infected individuals, strong cytotoxic T lymphocyte (CTL)-mediated immune pressure results in the selection of HIV-1 mutants that have escaped from wild-type-specific CTLs. If escape mutant-specific CTLs are not elicited in new hosts sharing donor HLA molecules, the transmission of these mutants results in the accumulation of escape mutants in the population. However, whether escape mutant-specific CTLs are definitively not elicited in new hosts sharing donor HLA molecules still remains unclear. A previous study showed that a Y-to-F substitution at the second position (2F) of the Nef138-10 epitope is significantly detected in HLA-A*2402+ hemophilic donors. Presently, we confirmed that this 2F mutant was an escape mutant by demonstrating strong and weak abilities of Nef138-10-specific CTL clones to suppress replication of the wild-type and 2F mutant viruses, respectively. We demonstrated the existence of the 2F-specific CTLs in three new hosts who had been primarily infected with the 2F mutant. The 2F-specific CTL clones suppressed the replication of both wild-type and mutant viruses. However, the abilities of these clones to suppress replication of the 2F virus were much weaker than those of wild-type-specific and the 2F-specific ones to suppress replication of the wild-type virus. These findings indicate that the 2F mutant is conserved in HIV-1-infected donors having HLA-A*2402, because the 2F-specific CTLs failed to completely suppress the 2F mutant replication and effectively prevented viral reversion in new hosts carrying HLA-A*2402.


2004 ◽  
Vol 78 (4) ◽  
pp. 1718-1729 ◽  
Author(s):  
Haili Zhang ◽  
Yan Zhou ◽  
Cecily Alcock ◽  
Tara Kiefer ◽  
Daphne Monie ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1)-infected individuals who develop drug-resistant virus during antiretroviral therapy may derive benefit from continued treatment for two reasons. First, drug-resistant viruses can retain partial susceptibility to the drug combination. Second, therapy selects for drug-resistant viruses that may have reduced replication capacities relative to archived, drug-sensitive viruses. We developed a novel single-cell-level phenotypic assay that allows these two effects to be distinguished and compared quantitatively. Patient-derived gag-pol sequences were cloned into an HIV-1 reporter virus that expresses an endoplasmic reticulum-retained Env-green fluorescent protein fusion. Flow cytometric analysis of single-round infections allowed a quantitative analysis of viral replication over a 4-log dynamic range. The assay faithfully reproduced known in vivo drug interactions occurring at the level of target cells. Simultaneous analysis of single-round infections by wild-type and resistant viruses in the presence and absence of the relevant drug combination divided the benefit of continued nonsuppressive treatment into two additive components, residual virus susceptibility to the drug combination and selection for drug-resistant variants with diminished replication capacities. In some patients with drug resistance, the dominant circulating viruses retained significant susceptibility to the combination. However, in other cases, the dominant drug-resistant viruses showed no residual susceptibility to the combination but had a reduced replication capacity relative to the wild-type virus. In this case, simplification of the regimen might still allow adequate suppression of the wild-type virus. In a third pattern, the resistant viruses had no residual susceptibility to the relevant drug regimen but nevertheless had a replication capacity equivalent to that of wild-type virus. In such cases, there is no benefit to continued treatment. Thus, the ability to simultaneously analyze residual susceptibility and reduced replication capacity of drug-resistant viruses may provide a basis for rational therapeutic decisions in the setting of treatment failure.


2002 ◽  
Vol 296 (5) ◽  
pp. 1228-1237 ◽  
Author(s):  
Andrew G Stephen ◽  
Karen M Worthy ◽  
Eric Towler ◽  
Judy A Mikovits ◽  
Shizuko Sei ◽  
...  

2007 ◽  
Vol 17 (16) ◽  
pp. 4437-4441 ◽  
Author(s):  
Alexandre Gagnon ◽  
Ma’an H. Amad ◽  
Pierre R. Bonneau ◽  
René Coulombe ◽  
Patrick L. DeRoy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document