Golgi-SNARE GS28 potentiates cisplatin-induced apoptosis by forming GS28–MDM2–p53 complexes and by preventing the ubiquitination and degradation of p53

2012 ◽  
Vol 444 (2) ◽  
pp. 303-314 ◽  
Author(s):  
Nian-Kang Sun ◽  
Shang-Lang Huang ◽  
Kun-Yi Chien ◽  
Chuck C.-K. Chao

In the present study, we observed that the Golgi-SNARE (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor) GS28 forms a complex with p53 in HEK (human embryonic kidney)-293 cells. Given that p53 represents a tumour suppressor that affects the sensitivity of cancer cells to various chemotherapeutic drugs, we examined whether GS28 may influence the level of sensitivity to the DNA-damaging drug cisplatin. Indeed, knockdown of GS28 using short-hairpin RNA (shGS28) induced resistance to cisplatin in HEK-293 cells. On the other hand, overexpression of GS28 sensitized HEK-293 cells to cisplatin, whereas no sensitization effect was noted for the mitotic spindle-damaging drugs vincristine and taxol. Accordingly, we observed that knockdown of GS28 reduced the accumulation of p53 and its pro-apoptotic target Bax. Conversely, GS28 overexpression induced the accumulation of p53 and Bax as well as the pro-apoptotic phosphorylation of p53 on Ser46. Further experiments showed that these cellular responses could be abrogated by the p53 inhibitor PFT-α (pifithrin-α), indicating that GS28 may affect the stability and activity of p53. The modulatory effects of GS28 on cisplatin sensitivity and p53 stability were absent in lung cancer H1299 cells which are p53-null. As expected, ectopic expression of p53 in H1299 cells restored the modulatory effects of GS28 on sensitivity to cisplatin. In addition, GS28 was found to form a complex with the p53 E3 ligase MDM2 (murine double minute 2) in H1299 cells. Furthermore, the ubiquitination of p53 was reduced by overexpression of GS28 in cells, confirming that GS28 enhances the stability of the p53 protein. Taken together, these results suggest that GS28 may potentiate cells to DNA-damage-induced apoptosis by inhibiting the ubiquitination and degradation of p53.

RSC Advances ◽  
2017 ◽  
Vol 7 (66) ◽  
pp. 41713-41722 ◽  
Author(s):  
Di Liu ◽  
Ying Wang ◽  
Shuang Ma ◽  
Hongyu Sun ◽  
Wenyan Shi ◽  
...  

Ginsenoside F2 and cyanidin-3-O-glucoside synergistically inhibited H2O2-induced apoptosis in HEK-293 cells through mitochondria-mediated apoptotic and NF-κB pathways.


Toxicology ◽  
2009 ◽  
Vol 262 (1) ◽  
pp. 73-79 ◽  
Author(s):  
Juraj Kopacek ◽  
Karol Ondrias ◽  
Barbora Sedlakova ◽  
Jana Tomaskova ◽  
Lucia Zahradnikova ◽  
...  

2012 ◽  
Vol 60 (32) ◽  
pp. 7880-7885 ◽  
Author(s):  
Li-Chuan Hsu ◽  
Ya-Wen Hsu ◽  
Yu-Han Liang ◽  
Zhi-Hu Lin ◽  
Yao-Haur Kuo ◽  
...  

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1198-1198
Author(s):  
Carolina L. Bigarella ◽  
Pauline Rimmele ◽  
Raymond Liang ◽  
Yasaman Azodi ◽  
Brigitte Izac ◽  
...  

Abstract Abstract 1198 Foxo3 transcription factor is a critical regulator of hematopoietic stem cell (HSC) quiescence and hematopoietic and leukemic stem cell maintenance. In particular, loss of Foxo3 has been shown in models of both acute and chronic myeloid leukemia to prevent the maintenance of leukemogenesis, indicating that devising strategies to inhibit Foxo3 will be of critical therapeutic value. Nonetheless mechanisms that control Foxo3 activity in HSC remain unknown. FoxO are regulated by post-translational modifications including phosphorylation, acetylation and redox modulation that together determine FoxO subcellular localization and activity. In response to growth factors stimulation FoxO are phosphorylated by AKT that promote their cytosolic localization and inhibition of transcriptional activity. Interestingly, in normal bone marrow HSC and in leukemic stem cells Foxo3 is constitutively nuclear despite readily detectable phospho-AKT, strongly suggesting that negative phosphorylation may not be the sole Foxo3 regulatory mechanism in these stem cells. While acetylation of Foxo3 is linked to oxidative stress, and oxidative stress is known to activate Foxo3, whether acetylation activates or inhibits Foxo3 remains unclear and it is proposed to be context-dependent. Therefore, we sought out to determine how acetylation of Foxo3 impacts its function in HSC. To address this question we generated Flag-tagged-Foxo3 mutants mimicking (lysine to glutamine) or abrogating (lysine to arginine) acetylation of all five putative acetylation sites using a PCR-based site-directed mutagenesis strategy and then cloned these mutants into the retroviral MSCV-IRES-GFP (MIG) vector for generation of retroviral supernatant and efficient transduction of bone marrow mononuclear cells. We first evaluated subcellular distribution of Foxo3 mutants in human embryonic kidney (HEK)-293 cells. Interestingly Foxo3 is mainly cytoplasmic in HEK-293 cells but hydrogen peroxide (H2O2) treatment induces Foxo3 nuclear translocation. Ectopic expression of Foxo3 mutants mimicking acetylation where five putative acetyl-lysine residues (5KQ) are mutated in HEK-293 cells and subsequent H2O2 treatment impairs Foxo3 nuclear localization (>50% reduction of nuclear Foxo3), although to a lesser extent than some of the single mutants, indicating that distinct acetylated lysines may impact differently Foxo3 activity. Moreover, protein expression of Foxo3 acetylation-mimic mutants is increased as compared to wild type Foxo3 in HEK-293 cells suggesting that acetylation affects Foxo3 protein stability. In order to analyze the impact of Foxo3 acetylation in vivo, we transduced bone marrow mononuclear cells (BMMC) freshly isolated from 5-fluoracil (5-FU) treated mice with acetyl-lysine mimic mutant Foxo3. GFP-positive transduced BMMC were FACS-sorted, cytospun onto glass slides and analyzed by immunostaining with anti-Flag antibody, in order to discriminate exogenously expressed Foxo3-WT versus Foxo3-mutants. In agreement with HEK-293 results, overexpression of Foxo3 mutant in which five acetylation sites were mimicked (5kQ) showed a significant decrease in nuclear localization, indicating that acetylation may lead to cytoplasmic Foxo3 and ultimately abrogate its activity in BMMC. Importantly, BMMC overexpressing Foxo3-5kQ injected into lethally irradiated mice (Colony Forming Unit-Spleen – CFU-S) produced significantly less spleen colonies at day 12, indicating that the Foxo3 acetyl-lysine mimic mutant may function as a dominant-negative Foxo3. We lastly investigated Foxo3 activity in a SIRT1 conditionally knockout mouse model since SIRT1 is the main Foxo3 deacetylase. In agreement with results described here we found that in SIRT1−/−LSK cells, Foxo3 is mainly cytoplasmic. Importantly and consistent with data generated from ectopic expression of Foxo3 acetyl-lysine mutants, Foxo3 protein expression is significantly (two-fold) increased in SIRT1−/− Lin−Sca1−cKit+ myeloid progenitors. These findings strongly support the notion that acetylation of Foxo3 abrogates its function in hematopoietic stem and progenitor cells. They also suggest that acetylation of Foxo3 impacts its protein stability. Altogether these results are important for understanding the mechanism of regulation of HSC activity and are likely to have significant therapeutic value. Disclosures: No relevant conflicts of interest to declare.


Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 886 ◽  
Author(s):  
Daniela Predoi ◽  
Simona Liliana Iconaru ◽  
Mihai Valentin Predoi

Dextran-coated zinc-doped hydroxyapatite (ZnHApD) was synthesized by an adapted sol-gel method. The stability of ZnHApD nanoparticles in an aqueous solution was analyzed using ultrasonic measurements. The analysis of the evolution in time of the attenuation for each of the frequencies was performed. The X-ray diffraction (XRD) investigations exhibited that no impurity was found. The morphology, size and size distribution of the ZnHApD sample was investigated by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The TEM and SEM results showed that the ZnHApD particles have an ellipsoidal shape and a narrow distribution of sizes. The cell growth and toxicity of HEK-293 cells were investigated on the ZnHApD solution for four different concentrations and analyzed after 24 and 48 h. The ZnHApD solution presented a non-toxic activity against HEK-293 cells for all analyzed concentrations. The antibacterial assay revealed that all the tested microorganisms were inhibited by the ZnHApD dispersion after 24 and 48 h of incubation. It was observed that the effect of the ZnHApD solution on bacteria growth depended on the bacterial strain. The Porphyromonas gingivalis ATCC 33277 bacterial strain was the most sensitive, as a growth inhibition in the presence of 0.075 μg/mL ZnHApD in the culture medium was observed.


Autophagy ◽  
2013 ◽  
Vol 9 (9) ◽  
pp. 1407-1417 ◽  
Author(s):  
Patience Musiwaro ◽  
Matthew Smith ◽  
Maria Manifava ◽  
Simon A. Walker ◽  
Nicholas T. Ktistakis
Keyword(s):  
Hek 293 ◽  

2005 ◽  
Vol 103 (6) ◽  
pp. 1156-1166 ◽  
Author(s):  
Kevin J. Gingrich ◽  
Son Tran ◽  
Igor M. Nikonorov ◽  
Thomas J. Blanck

Background Volatile anesthetics depress cardiac contractility, which involves inhibition of cardiac L-type calcium channels. To explore the role of voltage-dependent inactivation, the authors analyzed halothane effects on recombinant cardiac L-type calcium channels (alpha1Cbeta2a and alpha1Cbeta2aalpha2/delta1), which differ by the alpha2/delta1 subunit and consequently voltage-dependent inactivation. Methods HEK-293 cells were transiently cotransfected with complementary DNAs encoding alpha1C tagged with green fluorescent protein and beta2a, with and without alpha2/delta1. Halothane effects on macroscopic barium currents were recorded using patch clamp methodology from cells expressing alpha1Cbeta2a and alpha1Cbeta2aalpha2/delta1 as identified by fluorescence microscopy. Results Halothane inhibited peak current (I(peak)) and enhanced apparent inactivation (reported by end pulse current amplitude of 300-ms depolarizations [I300]) in a concentration-dependent manner in both channel types. alpha2/delta1 coexpression shifted relations leftward as reported by the 50% inhibitory concentration of I(peak) and I300/I(peak)for alpha1Cbeta2a (1.8 and 14.5 mm, respectively) and alpha1Cbeta2aalpha2/delta1 (0.74 and 1.36 mm, respectively). Halothane reduced transmembrane charge transfer primarily through I(peak) depression and not by enhancement of macroscopic inactivation for both channels. Conclusions The results indicate that phenotypic features arising from alpha2/delta1 coexpression play a key role in halothane inhibition of cardiac L-type calcium channels. These features included marked effects on I(peak) inhibition, which is the principal determinant of charge transfer reductions. I(peak) depression arises primarily from transitions to nonactivatable states at resting membrane potentials. The findings point to the importance of halothane interactions with states present at resting membrane potential and discount the role of inactivation apparent in current time courses in determining transmembrane charge transfer.


2007 ◽  
Vol 9 (4) ◽  
pp. 475-485 ◽  
Author(s):  
R. M. Johann ◽  
Ch. Baiotto ◽  
Ph. Renaud
Keyword(s):  
Hek 293 ◽  

Sign in / Sign up

Export Citation Format

Share Document