Role and structural characterization of plant aldehyde dehydrogenases from family 2 and family 7

2015 ◽  
Vol 468 (1) ◽  
pp. 109-123 ◽  
Author(s):  
Radka Končitíková ◽  
Armelle Vigouroux ◽  
Martina Kopečná ◽  
Tomáš Andree ◽  
Jan Bartoš ◽  
...  

We performed structure–function studies on two plant aldehyde dehydrogenase (ALDH) families involved in fertility restoration (RF) and stress tolerance. The high conservation of family 7 is linked to α-aminoadipic semialdehyde oxidation, whereas the less conserved family 2 is more diverse in substrate specificity.

Author(s):  
Jolanta Cieślak ◽  
Akimasa Miyanaga ◽  
Makoto Takaishi ◽  
Fumitaka Kudo ◽  
Tadashi Eguchi

Adenylation enzymes play an important role in the selective incorporation of the cognate carboxylate substrates in natural product biosynthesis. Here, the biochemical and structural characterization of the adenylation enzyme IdnL7, which is involved in the biosynthesis of the macrolactam polyketide antibiotic incednine, is reported. Biochemical analysis showed that IdnL7 selects and activates several small amino acids. The structure of IdnL7 in complex with an L-alanyl-adenylate intermediate mimic, 5′-O-[N-(L-alanyl)sulfamoyl]adenosine, was determined at 2.1 Å resolution. The structure of IdnL7 explains the broad substrate specificity of IdnL7 towards small L-amino acids.


1990 ◽  
Vol 269 (1) ◽  
pp. 25-29 ◽  
Author(s):  
T Abe ◽  
K Takada ◽  
K Ohkawa ◽  
M Matsuda

An enzyme which catalyses dehydrogenation of gamma-aminobutyraldehyde (ABAL) to gamma-aminobutyric acid (GABA) was purified to homogeneity from rat brain tissues by using DEAE-cellulose and affinity chromatography on 5′-AMP-Sepharose, phosphocellulose and Blue Agarose, followed by gel filtration. Such an enzyme was first purified from mammalian brain tissues, and was identified as an isoenzyme of aldehyde dehydrogenase. It has an Mr of 210,000 determined by polyacrylamide-gradient-gel electrophoresis, and appeared to be composed of subunits of Mr 50,000. The close similarity of substrate specificity toward acetaldehyde, propionaldehyde and glycolaldehyde between the enzyme and other aldehyde dehydrogenases previously reported was observed. But substrate specificity of the enzyme toward ABAL was higher than those of aldehyde dehydrogenases from human liver (E1 and E2), and was lower than those of ABAL dehydrogenases from human liver (E3), Escherichia coli and Pseudomonas species. The Mr and relative amino acid composition of the enzyme are also similar to those of E1 and E2. The existence of this enzyme in mammalian brain seems to be related to a glutamate decarboxylase-independent pathway (alternative pathway) for GABA synthesis from putrescine.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 2020
Author(s):  
Michael Paulsmeyer ◽  
John Juvik

Anthocyanins are pigments with appealing hues that are currently being used as sources of natural colorants. The interaction of acylation on the stability of anthocyanin molecules has long been known. Maize is an abundant source of malonylglucoside and dimalonylglucoside anthocyanins. The enzyme Aat1 is an anthocyanin acyltransferase known to synthesize the majority of acylated anthocyanins in maize. In this paper, we characterize the substrate specificity and reaction kinetics of Aat1. It was found that Aat1 has anthocyanin 3-O-glucoside dimalonyltransferase activity and is only the second enzyme of this type characterized to this date. Our results indicate that Aat1 can utilize malonyl-CoA; succinyl-CoA and every anthocyanin 3-O-glucoside tested. Results of this study provide insight into the structure–function relations of dimalonyltransferases and give a unique insight into the activity of monocot anthocyanin acyltransferases.


2015 ◽  
Vol 71 (12) ◽  
pp. 2479-2493 ◽  
Author(s):  
Neelanjana Janardan ◽  
Rajesh K. Harijan ◽  
Tiila-Riikka Kiema ◽  
Rikkert K. Wierenga ◽  
M. R. N. Murthy

Thiolases catalyze the degradation and synthesis of 3-ketoacyl-CoA molecules. Here, the crystal structures of a T1-like thiolase (MSM-13 thiolase) fromMycobacterium smegmatisin apo and liganded forms are described. Systematic comparisons of six crystallographically independent unliganded MSM-13 thiolase tetramers (dimers of tight dimers) from three different crystal forms revealed that the two tight dimers are connected to a rigid tetramerization domainviaflexible hinge regions, generating an asymmetric tetramer. In the liganded structure, CoA is bound to those subunits that are rotated towards the tip of the tetramerization loop of the opposing dimer, suggesting that this loop is important for substrate binding. The hinge regions responsible for this rotation occur near Val123 and Arg149. The Lα1–covering loop–Lα2 region, together with the Nβ2–Nα2 loop of the adjacent subunit, defines a specificity pocket that is larger and more polar than those of other tetrameric thiolases, suggesting that MSM-13 thiolase has a distinct substrate specificity. Consistent with this finding, only residual activity was detected with acetoacetyl-CoA as the substrate in the degradative direction. No activity was observed with acetyl-CoA in the synthetic direction. Structural comparisons with other well characterized thiolases suggest that MSM-13 thiolase is probably a degradative thiolase that is specific for 3-ketoacyl-CoA molecules with polar, bulky acyl chains.


Sign in / Sign up

Export Citation Format

Share Document