scholarly journals Effects of secretagogues on [32P]phosphatidylinositol 4,5-bisphosphate metabolism in the exocrine pancreas

1983 ◽  
Vol 212 (2) ◽  
pp. 483-488 ◽  
Author(s):  
J W Putney ◽  
G M Burgess ◽  
S P Halenda ◽  
J S McKinney ◽  
R P Rubin

Experiments were carried out to assess the effects of secretagogues on the polyphosphoinositides phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] on preparations of exocrine pancreas in vitro. Carbachol and caerulein provoked a rapid (less than 1 min) breakdown of 15-20% of [32P]PtdIns(4,5)P2 in isolated pancreatic acini, but did not affect [32P]PtdIns4P. In contrast, the Ca2+ ionophore ionomycin had no immediate effect on the levels of either inositide but caused a parallel fall in both lipids after 5-10 min. A similar decrease in [32P]PtdIns(4,5)P2 due to carbachol was obtained with isolated acini and isolated cells, despite the fact that the secretory response of isolated cells was considerably less than that of isolated acini. Loss of [32P]PtdIns(4,5)P2 elicited by carbachol or caerulein was unaffected either by the addition of EGTA in excess of extracellular Ca2+ or when a protocol was employed that eliminated caerulein-induced intracellular Ca2+-release. These results suggest that agonist-induced PtdIns(4,5)P2 breakdown in the exocrine pancreas may be an early step in the stimulus-response coupling pathway and also suggest that this breakdown is not dependent on Ca2+-mobilization.

1995 ◽  
Vol 268 (3) ◽  
pp. E531-E536 ◽  
Author(s):  
M. Otsuki ◽  
T. Akiyama ◽  
H. Shirohara ◽  
S. Nakano ◽  
K. Furumi ◽  
...  

Pancreatic exocrine function of a new inbred strain Otsuka Long-Evans Tokushima Fatty (OLETF) rat that develops spontaneous persistent hyperglycemia was evaluated in in vitro isolated pancreatic acini and compared with that in the control Long-Evans Tokushima Otsuka (LETO) rat. Serum glucose and insulin concentrations in the OLETF rats were significantly high (glucose: 270 +/- 12 vs. 208 +/- 10 mg/100 ml, P < 0.01; insulin: 12.4 +/- 1.7 vs. 4.9 +/- 0.6 ng/ml, P) < 0.01), whereas pancreatic wet weight was significantly low (803 +/- 20 vs. 1,138 +/- 17 mg, P < 0.01) compared with those in the LETO rat. Pancreatic acini isolated from the OLETF rat were totally insensitive to cholecystokinin (CCK)-8 stimulation at concentrations of up to 100 nM. However, neither the responsiveness nor the sensitivity to carbamylcholine, bombesin, and secretin of the acini from the OLETF rat was altered or even increased, probably due to the larger amylase content in the OLETF rat acini compared with those of the LETO rat acini (31.5 +/- 2.0 vs. 13.0 +/- 1.1 Somogyi units/micrograms DNA, P < 0.01). The responsiveness to fluoride, a direct activator of guanine nucleotide-binding protein, in the OLETF rat acini was similar to that in the LETO rat, suggesting that the transmembrane signaling and effectors and subsequent intracellular signal transduction molecules in the OLETF rat acini are normal. Moreover, 125I-CCK binding to the acini prepared from the OLETF rat was totally absent. These present results indicate that the OLETF rat has a selective defect in the binding of CCK to its receptors on the acinar cell surface.


1978 ◽  
Vol 31 (1) ◽  
pp. 199-211
Author(s):  
N.B. Berg

The types of sulphated macromolecules produced by the exocrine pancrease were investigated. To determine whether this tissue utilized inorganic sulphate for protein production, the in-vitro behaviour of material labelled with 35S-sulphate was compared with material labelled with [3H]leucine (secretory proteins). While incubating tissue slices in the presence of cycloheximide resulted in an immediate and nearly complete inhibition of protein synthesis, a similar decrease in production of sulphated material was not observed until after 2 h of incubation in the presence of the drug. Likewise, the kinetics of pilocarpine-induced discharge of radioactive material from pancreatic slices pulse-labelled with either 3H-Leu. or 35S-sulphate was compared. During the first 90 min of stimulation sulphated macromolecules were detected in chase medium 10–15 min prior to the appearance of 3H-labelled secretory proteins. That in-vitro behaviour of sulphated material differed from radioleucine-labelled material is indicative of the fact that the pancreas utilizes inorganic sulphate for the production of macromolecules other than secretory proteins. Lipid and proteoglycan fractions were prepared from pancreatic tissue 4 h after intraperitoneal injection of radiosulphate. The recovery of a significant amount of radioactivity in both fractions deomonstrated the ability of the pancreas to use inorganic sulphate for the production of both sulphated lipids and sulphated proteoglycans. The possible function of sulphated macromolecules in pancreatic secretion is discussed.


1994 ◽  
Vol 267 (1) ◽  
pp. G40-G51 ◽  
Author(s):  
S. D. Freedman ◽  
K. Sakamoto ◽  
G. A. Scheele

The in vivo and in vitro secretion of glycoprotein-2 (GP-2), a glycosyl phosphatidylinositol (GPI)-anchored protein from the rat exocrine pancreas, was characterized. GP-2 was secreted in a nonparallel manner compared with amylase, a marker of secretory enzymes. Attenuated GP-2 secretion correlated with hormones that stimulated exocytosis in acinar cells. Augmented GP-2 secretion correlated with hormones that stimulated fluid and bicarbonate secretion from ductal elements. Immunofluorescence studies identified an enriched pool of GP-2 tightly bound to the apical membranes of acinar cells in addition to zymogen granules. This non-zymogen granule pool appears to represent the source of GP-2 released from acinar cells in a nonparallel manner. With the use of dispersed pancreatic acini largely devoid of ductal elements, GP-2 release was found to be augmented by alkaline pH. Thus GP-2 secretion appears to be modulated by two discrete cellular processes: 1) delivery of prereleased GP-2 within zymogen granules to the ductal lumen by exocytic mechanisms and 2) enzymatic release of GPI-anchored GP-2 from the luminal membranes, a kinetic process that appears to be regulated by secretin- or carbachol-induced secretion of bicarbonate.


1993 ◽  
Vol 264 (6) ◽  
pp. C1428-C1433 ◽  
Author(s):  
J. Ostrowski ◽  
K. Wojciechowski ◽  
S. J. Konturek ◽  
E. Butruk

The present studies were designed to evaluate the parietal cell acid production in response to short-time stimulation by epidermal growth factor (EGF). Studies were performed in vitro using isolated cells from rat stomachs, and acid production was indirectly determined by [14C]aminopyrine accumulation. EGF inhibited histamine-stimulated aminopyrine accumulation from standard incubation medium (K+ = 5 mM) but not from that with increased K+ concentration (K+ = 70 mM). EGF significantly stimulated ornithine decarboxylase (ODC) activity, an effect that was blocked by the specific ODC inhibitor, difluoromethylornithine (DFMO). In the presence of DFMO, EGF failed to inhibit histamine-stimulated aminopyrine uptake. Like EGF, the polyamine spermine, which is a direct product of enhanced ODC activity, also inhibited histamine-stimulated aminopyrine uptake. Unlike EGF, the spermine-induced inhibition of aminopyrine accumulation was not altered by DFMO. Thus the DFMO effect was specific to EGF. Taken together, these results are consistent with the postulate that EGF inhibits parietal cell secretory response through the induction of ODC activity and increased synthesis of polyamines.


1984 ◽  
Vol 219 (2) ◽  
pp. 655-659 ◽  
Author(s):  
R P Rubin ◽  
P P Godfrey ◽  
D A Chapman ◽  
J W Putney

The formation of inositol phosphates in response to secretagogues was studied in rat pancreatic acini preincubated with [3H]inositol. Carbachol caused rapid increases in radioactive inositol phosphate, inositol bisphosphate and inositol trisphosphate . This effect was blocked by atropine, and also elicited by caerulein, but not by ionomycin or phorbol dibutyrate. Thus phospholipase C-mediated breakdown of polyphosphoinositides, with the resulting formation of inositol phosphates, may be an early step in the stimulus-secretion coupling pathway in exocrine pancreas. Inositol trisphosphate may function as a second messenger in the exocrine pancreas, coupling receptor activation to internal Ca2+ release.


1997 ◽  
Vol 10 (01) ◽  
pp. 6-11 ◽  
Author(s):  
R. F. Rosenbusch ◽  
L. C. Booth ◽  
L. A. Dahlgren

SummaryEquine tendon fibroblasts were isolated from explants of superficial digital flexor tendon, subcultured and maintained in monolayers. The cells were characterized by light microscopy, electron microscopy and radiolabel studies for proteoglycan production. Two predominant cell morphologies were identified. The cells dedifferentiated toward a more spindle shape with repeated subcultures. Equine tendon fibroblasts were successfully cryopreserved and subsequently subcultured. The ability to produce proteoglycan was preserved.The isolated cells were identified as fibroblasts, based on their characteristic shape by light microscopy and ultrastructure and the active production of extracellular matrix proteins. Abundant rough endoplasmic reticulum and the production of extracellular matrix products demonstrated active protein production and export. Proteoglycans were measurable via liquid scintillation counting in both the cell-associated fraction and free in the supernatant. This model is currently being utilized to study the effects of polysulfated glycosaminoglycan on tendon healing. Future uses include studying the effects of other pharmaceuticals, such as hyaluronic acid, on tendon healing.A model was developed for in vitro investigations into tendon healing. Fibroblasts were isolated from equine superficial digital flexor tendons and maintained in monolayer culture. The tenocytes were characterized via light and electron microscopy. Proteoglycan production was measured, using radio-label techniques. The fibroblasts were cryopreserved and subsequently subcultured. The cells maintained their capacity for proteoglycan production, following repeated subculturing and cryopreservation.


1984 ◽  
Vol 52 (03) ◽  
pp. 333-335 ◽  
Author(s):  
Vider M Steen ◽  
Holm Holmsen

SummaryThe inhibitory effect of cAMP-elevating agents on shape change and aggregation in human platelets was studied to improve the understanding of the sequential relationship between these two responses.Human platelet-rich plasma was preincubated for 2 min at 37° C with prostaglandin E1 or adenosine, agents known to elevate the intracellular level of cAMP. Their inhibitory effects on ADP-induced shape change and aggregation were determined both separately and simultaneously. The dose-inhibition patterns for shape change and aggregation were similar for both PGE1 and adenosine. There was no distinct difference between the inhibitory action of these two inhibitors.These observations suggest that elevation of the intracellular concentration of cAMP interferes with an early step in the stimulus-response coupling that is common for aggregation and shape change.


Function ◽  
2021 ◽  
Vol 2 (3) ◽  
Author(s):  
Nelly Redolfi ◽  
Elisa Greotti ◽  
Giulia Zanetti ◽  
Tino Hochepied ◽  
Cristina Fasolato ◽  
...  

AbstractMitochondria play a key role in cellular calcium (Ca2+) homeostasis. Dysfunction in the organelle Ca2+ handling appears to be involved in several pathological conditions, ranging from neurodegenerative diseases, cardiac failure and malignant transformation. In the past years, several targeted green fluorescent protein (GFP)-based genetically encoded Ca2+ indicators (GECIs) have been developed to study Ca2+ dynamics inside mitochondria of living cells. Surprisingly, while there is a number of transgenic mice expressing different types of cytosolic GECIs, few examples are available expressing mitochondria-localized GECIs, and none of them exhibits adequate spatial resolution. Here we report the generation and characterization of a transgenic mouse line (hereafter called mt-Cam) for the controlled expression of a mitochondria-targeted, Förster resonance energy transfer (FRET)-based Cameleon, 4mtD3cpv. To achieve this goal, we engineered the mouse ROSA26 genomic locus by inserting the optimized sequence of 4mtD3cpv, preceded by a loxP-STOP-loxP sequence. The probe can be readily expressed in a tissue-specific manner upon Cre recombinase-mediated excision, obtainable with a single cross. Upon ubiquitous Cre expression, the Cameleon is specifically localized in the mitochondrial matrix of cells in all the organs and tissues analyzed, from embryos to aged animals. Ca2+ imaging experiments performed in vitro and ex vivo in brain slices confirmed the functionality of the probe in isolated cells and live tissues. This new transgenic mouse line allows the study of mitochondrial Ca2+ dynamics in different tissues with no invasive intervention (such as viral infection or electroporation), potentially allowing simple calibration of the fluorescent signals in terms of mitochondrial Ca2+ concentration ([Ca2+]).


Sign in / Sign up

Export Citation Format

Share Document