scholarly journals Purine biosynthesis de novo in rat skeletal muscle

1983 ◽  
Vol 216 (3) ◽  
pp. 605-610 ◽  
Author(s):  
T G Sheehan ◽  
E R Tully

Purine biosynthesis by the ‘de novo’ pathway was demonstrated in isolated rat extensor digitorum longus muscle with [1-14C]glycine, [3-14C]serine and sodium [14C]formate as nucleotide precursors. Evidence is presented which suggests that the source of glycine and serine for purine biosynthesis is extracellular rather than intracellular. The relative incorporation rates of the three precursors were formate greater than glycine greater than serine. Over 85% of the label from formate and glycine was recovered in the adenine nucleotides, principally ATP. Azaserine markedly inhibited purine biosynthesis from both formate and glycine. Cycloserine inhibited synthesis from serine, but not from formate. Adenine, hypoxanthine and adenosine markedly inhibited purine synthesis from sodium [14C]formate.

1981 ◽  
Vol 241 (3) ◽  
pp. C145-C149 ◽  
Author(s):  
K. Zierler ◽  
E. Rogus

Experiments were designed to test the hypothesis that insulin-induced hyperpolarization of rat skeletal muscle is mediated by stimulation of a ouabain-inhibitable electrogenic pump. Parallel experiments were carried out on rat caudofemoralis with isoproterenol, known to hyperpolarize rat skeletal muscle by stimulation of such a pump. Ouabain (10(-5) M) completely inhibited isoproterenol-induced hyperpolarization within 15 min but had no effect on half-maximal insulin-induced hyperpolarization. Ouabain (10(-6) M) inhibited isoproterenol effect by 60% during a period of 5–15 min. Ouabain (10(-4) M) had no effect on insulin-induced hyperpolarization within 10 min but depolarized during the next 10 min. In a separate series of studies in rat extensor digitorum longus muscle, 10(-5) M ouabain increased intracellular Na+ within 14 min. It is concluded that in rat caudofemoralis muscle, insulin-induced hyperpolarization is not mediated by a ouabain-inhibitable electrogenic pump.


1971 ◽  
Vol 121 (5) ◽  
pp. 817-827 ◽  
Author(s):  
R. C. Hider ◽  
E. B. Fern ◽  
D. R. London

1. The kinetics of radioactive labelling of extra- and intra-cellular amino acid pools and protein of the extensor digitorum longus muscle were studied after incubations with radioactive amino acids in vitro. 2. The results indicated that an extracellular pool could be defined, the contents of which were different from those of the incubation medium. 3. It was concluded that amino acids from the extracellular pool, as defined in this study, were incorporated directly into protein.


1982 ◽  
Vol 242 (3) ◽  
pp. C234-C241 ◽  
Author(s):  
D. R. Manning ◽  
J. T. Stull

Phosphorylation of the myosin light chain 2 (LC2) subunit was examined in rat fast-twitch and slow-twitch skeletal muscles in response to repetitive stimulation at 23 and 35 degrees C and on incubation of fast-twitch skeletal muscle with isoproterenol. After a 1-s tetany at 35 degrees C, LC2 phosphate content in extensor digitorum longus muscle increased rapidly and transiently from 0.21 to 0.51 mol phosphate/mol LC2. This pattern of phosphorylation was similar to that observed at 23 degrees C. Increases in LC2 phosphate content were dependent on the frequency and duration of stimulation. In soleus muscle LC2 phosphate content was minimal following a 1-s tetany but increased markedly following more prolonged tetanies. On incubation of extensor digitorum longus muscle with isoproterenol (20 microM), LC2 phosphate content did not change, whereas phosphorylase a levels increased. A positive correlation existed between LC2 phosphate content and potentiation of peak twitch tension in both types of muscles, suggesting a physiological function for LC2 phosphorylation.


2005 ◽  
Vol 288 (6) ◽  
pp. C1367-C1373 ◽  
Author(s):  
Daniela Danieli-Betto ◽  
Elena Germinario ◽  
Alessandra Esposito ◽  
Aram Megighian ◽  
Menotti Midrio ◽  
...  

Sphingomyelin derivatives exert various second messenger actions in numerous tissues. Sphingosine (SPH) and sphingosine 1-phosphate (S1P) are two major sphingomyelin derivatives present at high levels in blood. The aim of the present work was to investigate whether S1P and SPH exert relevant actions in mouse skeletal muscle contractility and fatigue. Exogenous S1P and SPH administration caused a significant reduction of tension decline during fatigue of extensor digitorum longus muscle. Final tension after the fatiguing protocol was 40% higher than in untreated muscle. Interestingly, N, N-dimethylsphingosine, an inhibitor of SPH kinase (SK), abolished the effect of supplemented SPH but not that of S1P, suggesting that SPH acts through its conversion to S1P. Moreover, SPH was not effective in Ca2+-free solutions, in agreement with the hypothesis that SPH action is dependent on its conversion to S1P by the Ca2+-requiring enzyme SK. In contrast to SPH, S1P produced its positive effects on fatigue in Ca2+-free conditions, indicating that S1P action does not require Ca2+ entry and most likely is receptor mediated. The effects of S1P could be ascribed in part to its ability to prevent the reduction (−20 mV) of action potential amplitude caused by fatigue. In conclusion, these results indicate that extracellular S1P has protective effects during the development of muscle fatigue and that the extracellular conversion of SPH to S1P may represent a rheostat mechanism to protect skeletal muscle from possible cytotoxic actions of SPH.


Development ◽  
1986 ◽  
Vol 92 (1) ◽  
pp. 1-10
Author(s):  
Adarshk Gulati

Autotransplantation of rat extensor digitorum longus muscle results in initial myofibre degeneration and subsequent regeneration from precursor myosatellite cells. To determine what effect a reinjury would have on the regenerative response, in the present,study, once transplanted and regenerated muscles were reinjured by reautotransplantion. In rats, four weeks after initial transplantation, when the regeneration was complete, the extensor digitorum longus muscle was transplanted again and the pattern of regeneration in reautotransplanted and once auto transplanted muscles was compared. Muscles were analysed 2, 4, 7, 14 and 30 days after autotransplantation and reautotransplantation. Both autotransplanted and reautotransplanted muscles underwent degeneration and regeneration; however, the pattern of regeneration in these two transplants was quite different. In autotransplants, a thin myogenic zone, marked by activated myoblasts, was first seen at 4 days. By 7 days the width of myogenic zone increased but still many degenerating myofibres were present in the central region of the muscle. By 14 days the muscle was filled with regenerated myotubes and myofibres. The reautotransplanted muscles underwent similar regenerative events; however, the rate of regeneration was considerably faster. The myogenic zone was apparent as early as 2 days and was much larger at 4 days, and by 7 days the entire muscle was filled with regenerated myotubes and myofibres which matured at later time intervals. Furthermore, the decrease in muscle weight in reautotransplanted muscles was not as much as that seen after autotransplantation. These findings reveal that not only is skeletal muscle capable of regeneration after a second injury, but the rate of this regeneration is much faster. This increased rate and recovery may be due to a conditioning effect of the first injury.


2020 ◽  
Author(s):  
Kenth-Arne Hansson ◽  
Andreas Våvang Solbrå ◽  
Kristian Gundersen ◽  
Jo Christiansen Bruusgaard

AbstractTransport distances in skeletal muscle fibers are mitigated by these cells having multiple nuclei. We have studied mouse living slow (soleus) and fast (extensor digitorum longus) muscle fibers in situ and determined cellular dimensions and the positions of all the nuclei within fiber segments. We modelled the effect of placing nuclei optimally and randomly using the nuclei as the origin of a transportation network. It appeared that an equidistant positioning of nuclei minimizes transport distances along the surface for both muscles. In the soleus muscle however, which were richer in nuclei, positioning of nuclei to reduce transport distances to the cytoplasm were of less importance, and these fibers exhibit a pattern not statistically different from a random positioning of nuclei. Together, these results highlight the importance of spatially distribute nuclei to minimize transport distances to the surface when nuclear density is low, while it appears that the distribution are of less importance at higher nuclear densities.


1986 ◽  
Vol 239 (1) ◽  
pp. 245-248 ◽  
Author(s):  
K Sahlin ◽  
A Katz

The concentration of NADH was determined a high-oxidative muscle (soleus) and a high-glycolytic muscle (extensor digitorum longus, EDL) from resting rats. The NADH content of freeze-clamped control muscles was 0.35 +/- 0.04 (mean +/- S.D.) and 0.31 +/- 0.04 mmol/kg dry wt. in EDL and soleus respectively, and increased to peak values of 0.58 +/- 0.05 (EDL) and 0.87 +/- 0.10 (soleus) after 10 min of NaCN treatment. The [lactate]/[pyruvate] ratio, which was not significantly changed in soleus and increased only slightly in EDL after NaCN incubation, shows that only minor changes occurred in the cytosolic NADH concentration. Provided that the major part of muscle NADH is located in the mitochondria it can be calculated that the mitochondrial NADH content in skeletal muscle at rest is about 36 (soleus) and 60% (EDL) of the anoxic value, respectively. These results are in contrast with previous studies with the surface-fluorescence technique, where mitochondrial NAD appeared to be almost completely reduced in resting skeletal muscle.


1988 ◽  
Vol 255 (5) ◽  
pp. E604-E612 ◽  
Author(s):  
M. E. Everts ◽  
T. Clausen

The effects of hypothyroidism and 3,5,3'-triiodothyronine (T3) treatment on passive Na+-K+ fluxes and Na+-K+ pump concentration were investigated in isolated rat muscle. Within 12 h after a single dose of T3 (20 micrograms/100 g body wt), K+ efflux had increased by 21% in soleus and by 20% in extensor digitorum longus muscle. In the presence of ouabain, even larger effects were observed. These changes were associated with a 12% rise in amiloride-suppressible Na+ influx but no significant increase in [3H]ouabain binding site concentration. After 3 days of T3 treatment, the stimulating effect on K+ efflux and Na+ influx in soleus reached a plateau approximately 80 and 40% above control levels, respectively, whereas the maximum increase in [3H]ouabain binding site concentration (103%) was only fully developed after 8 days. Hypothyroidism decreased 86Rb efflux by 30%. The efflux of K+ and the influx of Na+ per contraction (both approximately 7 nmol/g wet wt) as well as the net loss of K+ induced by electrical stimulation were unaffected by T3 treatment. The rise in resting K+ efflux after 12-24 h of T3 treatment could be partly blocked by dantrolene or trifluoroperazine, indicating that an increase in the cytoplasmic Ca2+ concentration may contribute to the early rise in K+ efflux. It is concluded that the early rise in the resting passive leaks of Na+ and K+ induced by T3 is a major driving force for Na+-K+ pump synthesis.


Sign in / Sign up

Export Citation Format

Share Document