scholarly journals Production and characterization of monoclonal antibodies to insulin secretory granule membranes

1987 ◽  
Vol 245 (2) ◽  
pp. 557-566 ◽  
Author(s):  
K A Grimaldi ◽  
J C Hutton ◽  
K Siddle

Monoclonal antibodies to insulin secretory granule membranes were obtained following immunization of mice with granule membranes purified from a rat transplantable insulinoma. The specificities of the antibodies were investigated by using binding assays with different insulinoma subcellular fractions, by indirect immunofluorescence studies with intact and permeabilized cells, and by immunoblotting of granule membrane proteins fractionated by SDS/polyacrylamide-gel electrophoresis. Fifty-six antibodies were characterized initially, and 21 representative cell lines were cloned. The antibodies fell into four categories: (1) binding preferentially to secretory granules, and reacting with a component of approx. 80,000 Da on immunoblots (antigen designated SGM 80); (2) binding preferentially to secretory granules, and reacting with components of approx. 110,000 and 50,000 Da on immunoblots (antigen designated SGM 110); (3) binding preferentially to secretory granules but unreactive on immunoblots; (4) binding to membrane antigen(s) with a widespread intracellular distribution which included granules and plasma membranes. The antigens SGM 80 and SGM 110 were studied in more detail and both were shown to be integral membrane glycoproteins with antigenic determinants located on the internal face of the secretory granule membrane. These antigens were also present in normal rat islets of Langerhans and similar components were detected by immunoblotting in secretory granules from anterior pituitary and adrenal medulla. Proteins which were immunologically related to SGM 80 and SGM 110, but distinct in molecular size, were also identified in liver. It is concluded that secretory granules contain specific components which are restricted in subcellular location but widespread in tissue distribution. The antibodies obtained will be valuable reagents in the further investigation of the biogenesis and turnover of insulin secretory granules.

1987 ◽  
Vol 245 (2) ◽  
pp. 575-582 ◽  
Author(s):  
H W Davidson ◽  
J C Hutton

A carboxypeptidase B-like enzyme was detected in the soluble fraction of purified insulin secretory granules, and implicated in insulin biosynthesis. To investigate the role of this activity further, we purified the enzyme from rat insulinoma tissue by gel-filtration chromatography and affinity elution from p-aminobenzoyl-arginine. A yield of 42%, with a purification factor of 674 over the homogenate, was achieved. Analysis of the purified carboxypeptidase by SDS/polyacrylamide-gel electrophoresis under either reducing or non-reducing conditions showed it to be a monomeric protein of apparent Mr 55,000. The preparation was also homogeneous by high-performance gel-filtration chromatography. The enzyme bound to concanavalin A, showing it to be a glycoprotein. Amino acid analysis or chemical deglycosylation and SDS/polyacrylamide-gel electrophoresis indicated a protein Mr of 50,000, suggesting a carbohydrate content of approx. 9% by weight. The purified enzyme was able to remove basic amino acids from the C-terminus of proinsulin tryptic peptides to generate insulin, but did not further degrade the mature hormone. It was inhibited by EDTA, 1,10-phenanthroline and guanidinoethylmercaptosuccinic acid, and stimulated 5-fold by CoCl2. The pH optimum of the conversion of diarginyl-insulin into insulin was in the range 5-6, with little activity above pH 6.5. Activity was also expressed towards a dansylated tripeptide substrate (dansyl-phenylalanyl-leucyl-arginine; Km = 17.5 microM), and had a pH optimum of 5.5. These properties are indistinguishable from those of the activity located in secretory granules, and are compatible with the intragranular environment. The insulin-secretory-granule carboxypeptidase shared several properties of carboxypeptidase H from bovine adrenal medulla and pituitary. We propose that the carboxypeptidase that we purified is the pancreatic isoenzyme of carboxypeptidase H (crino carboxypeptidase B; EC 3.4.17.10), and is involved in the biosynthesis of insulin in the pancreatic beta-cell.


1984 ◽  
Vol 99 (4) ◽  
pp. 1354-1363 ◽  
Author(s):  
T N Spearman ◽  
K P Hurley ◽  
R Olivas ◽  
R G Ulrich ◽  
F R Butcher

Rat parotid minces were labeled with [32P]Pi, stimulated with isoproterenol, homogenized in sucrose, and fractionated on continuous sucrose density gradients. We analyzed the resulting fractions by sodium dodecyl sulfate polyacrylamide gel electrophoresis and autoradiograms were made from the gels. Comparison of fractions from control and isoproterenol-stimulated minces revealed seven phosphoproteins that were affected by isoproterenol. The subcellular location of these proteins was determined by comparing their distribution in the sucrose gradients with that of a number of enzymes that are characteristic of specific organelles. Isoproterenol decreased the phosphorylation of two cytoplasmic proteins (Mr 16,000 and 18,000) and increased the phosphorylation of a third (Mr 14,000). The phosphorylation of two endoplasmic reticulum proteins was increased by isoproterenol (Mr 20,500 and 22,500), as was an Mr 31,000 protein which was probably the S6 ribosomal protein. The phosphorylation of a secretory granule protein (Mr 24,000) was decreased by isoproterenol. We then developed a purification scheme for parotid secretory granules. By using this method, we demonstrated that the phosphorylation of the Mr 24,000 was also decreased by carbamylcholine. Granules purified by this method also contained a small number of other phosphoproteins whose phosphorylation was increased only by isoproterenol. Secretory granule-associated stimulus-affected phosphoproteins were found in the particulate fraction when the granules were hypotonically lysed, and were not extracted from the particulate fraction by washing with 0.6 M KCl.


1992 ◽  
Vol 40 (6) ◽  
pp. 793-806 ◽  
Author(s):  
S Yamashita ◽  
K Yasuda

Monoclonal antibody (MAb) 170-5 was generated to the secretory granule membrane of rat parotid acinar cells. The MAb recognized integral membrane glycoproteins (SG 170 antigen) localized on the luminal side of the secretory granules with N-linked carbohydrates, molecular weights 92, 84, 76, 69, and 65 KD. Immunohistochemical studies indicated that the SG 170 antigen was found in the secretory granules of both exocrine and endocrine cells and in the lysosomes of various cells in the rat. Immunoelectron microscopy with immunogold revealed that the antigen was present on the membrane of the secretory granules, lysosomes, the Golgi vesicles, and condensing vacuoles in pancreatic and parotid acinar cells and in AR42J rat pancreatic tumor cells; the Golgi stacks exhibited no immunoreaction. The common localization of the antigen in the secretory granule membranes indicated that this antigen may play an essential role in regulated secretion. Employing HRP-labeled MAb 170-5, we followed the retrieval of the antigen after exocytosis in AR42J cells. The MAb was internalized specifically with antigen-mediated endocytosis. It was transported to endosomes, subsequently to the trans-Golgi network, and then packaged into secretory granules. However, the Golgi stacks revealed no uptake of the labeled antibody.


1987 ◽  
Vol 245 (2) ◽  
pp. 567-573 ◽  
Author(s):  
K A Grimaldi ◽  
K Siddle ◽  
J C Hutton

The biosynthesis of a component SGM 110, specifically localized to the membrane of insulin secretory granules, was studied in rat insulinoma cells and in normal islets of Langerhans. Cells or islets were labelled with [35S]methionine or [3H]mannose and SGM 110 was immunoprecipitated by using a monoclonal antibody. Pulse-chase experiments demonstrated that the nascent polypeptide was cotranslationally glycosylated to form a 97,000 Da peptide which in turn was processed to the mature 110,000 Da form. A 50,000 Da form detected by immunoblotting with the same antibody was not conspicuously labelled even after a 20 h chase incubation, suggesting that it represented late processing of SGM 110 in lysosomes. With insulinoma cells, an increase in medium glucose concentration from 3 mM to 20 mM was without effect on the secretion of insulin or on the biosynthesis of (pro)insulin or SGM 110. In normal islets, however, 20 mM-glucose produced a 17-fold increase in (pro)insulin biosynthesis and a 13-fold increase in SGM 110 biosynthesis, compared with only a 2-fold increase in total protein synthesis, as judged by incorporation of [35S]methionine during a 1 h incubation. The effect of glucose on both (pro)insulin and SGM 110 biosynthesis was blocked by the addition of mannoheptulose, but not by the removal of extracellular calcium, both of which conditions inhibit insulin secretion. In contrast tolbutamide, an agent which stimulates insulin secretion, did not enhance the biosynthesis of (pro)insulin or SGM 110. It is concluded that at least one protein component of the insulin secretory granule membrane is synthesized co-ordinately with proinsulin and is subject to similar regulatory mechanisms. Factors which acutely control insulin secretion may also control granule biogenesis, although the two processes are not coupled in an obligatory fashion.


1971 ◽  
Vol 50 (1) ◽  
pp. 187-200 ◽  
Author(s):  
Abraham Amsterdam ◽  
Michael Schramm ◽  
Itzhak Ohad ◽  
Yoram Salomon ◽  
Zvi Selinger

After enzyme secretion the membrane of the secretory granule, which had been fused to the cell membrane, was resorbed into the cell. Experiments were therefore carried out to test whether formation of new secretory granules involves reutilization of the resorbed membrane or synthesis of a new membrane, de novo, from amino acids. Incorporation of amino acids-14C into proteins of various cell fractions was measured in vivo, 30, 120, and. 300 min after labeling. At all times the specific radioactivity of the secretory granule membrane was about equal to that of the granule's exportable content. At 120 and 300 min the specific radioactivity of the granule membrane and of the granule content was much higher than that of any other subcellular fraction. It is therefore concluded that the protein of the membrane is synthesized de novo concomitantly with the exportable protein. The proteins of the granule membrane could be distinguished from those of the granule content by gel electrophoresis. All major bands were labeled proportionately to their staining intensity. The amino acid composition of the secretory granule membrane was markedly different from that of the granule's content and also from that of the mitochondrial membrane. The granule membrane showed a high proline content, 30 moles/100 moles amino acids. The analyses show that the radioactivity of the granule membrane is indeed inherent in its proteins and is not due to contamination by other fractions. The possibility is considered that the exportable protein leaves the endoplasmic reticulum already enveloped by the newly synthesized membrane.


2021 ◽  
Vol 118 (37) ◽  
pp. e2107665118
Author(s):  
Elisabeth Kemter ◽  
Andreas Müller ◽  
Martin Neukam ◽  
Anna Ivanova ◽  
Nikolai Klymiuk ◽  
...  

β cells produce, store, and secrete insulin upon elevated blood glucose levels. Insulin secretion is a highly regulated process. The probability for insulin secretory granules to undergo fusion with the plasma membrane or being degraded is correlated with their age. However, the molecular features and stimuli connected to this behavior have not yet been fully understood. Furthermore, our understanding of β cell function is mostly derived from studies of ex vivo isolated islets in rodent models. To overcome this translational gap and study insulin secretory granule turnover in vivo, we have generated a transgenic pig model with the SNAP-tag fused to insulin. We demonstrate the correct targeting and processing of the tagged insulin and normal glycemic control of the pig model. Furthermore, we show specific single- and dual-color granular labeling of in vivo–labeled pig pancreas. This model may provide unprecedented insights into the in vivo insulin secretory granule behavior in an animal close to humans.


1993 ◽  
Vol 106 (2) ◽  
pp. 649-655 ◽  
Author(s):  
S.M. Hurtley

Recycling of a secretory granule membrane protein, dopamine-beta-hydroxylase, was examined in primary cultures of bovine adrenal chromaffin cells. Cells were stimulated to secrete in the presence of antibodies directed against the luminal domain of dopamine-beta-hydroxylase. The location of the antibodies after various times of reincubation and after a second secretory stimulus was assessed using immunofluorescence microscopy. Stimulation led to the exposure of dopamine-beta-hydroxylase at the plasma membrane, which could be detected by a polyclonal antibody in living and fixed cells. The plasma membrane dopamine-beta-hydroxylase, either alone or complexed with antibody, was rapidly internalized after removal of the secretagogue. Internalized protein-antibody complex remained stable for at least 24 hours of reculture. Twenty four hours after stimulation the cells with internalized antibody could respond to further stimulation and some of the antibody was re-exposed at the plasma membrane. These findings were confirmed using FACS analysis. This suggests that the antibody-protein complex had returned to secretory granules that could respond to further secretagogue stimulation.


1984 ◽  
Vol 219 (2) ◽  
pp. 471-480 ◽  
Author(s):  
N E Tooke ◽  
C N Hales ◽  
J C Hutton

Subcellular fractions were isolated from a rat beta-cell tumour by centrifugation of homogenates on Percoll and Urografin density gradients. Fractions were incubated with [gamma-32P]ATP, and labelling of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate was used to measure phosphatidylinositol kinase and phosphatidylinositol 4-phosphate kinase activities, respectively. The distribution of enzyme markers in density gradients indicated that phosphatidylinositol kinase was located in both the plasma membrane and the secretory-granule membrane. Phosphatidylinositol 4-phosphate kinase activity was low in all fractions. Phosphatidylinositol kinase activity of secretory granules and plasma membranes was decreased to 10-20% of its initial value by raising the free [Ca2+] from 1 microM to 5 microM. The enzyme had a Km (apparent) for ATP of 110 microM (secretory granule) or 120 microM (plasma membrane) and a Ka for Mg2+ of 7 mM (secretory granule) or 6 mM (plasma membrane). Ca2+-sensitivity of phosphatidylinositol kinase in calmodulin-depleted secretory granules and plasma membranes was not affected by addition of exogenous calmodulin, although activity was stimulated by trifluoperazine in the presence of 0.1 microM or 40 microM-Ca2+. Trifluoperazine oxide had no effect on the enzyme activity of secretory granules. Plasma membranes had a phosphatidylinositol 4-phosphate phosphatase activity which was stimulated by raising the free [Ca2+] from 0.1 to 40 microM. The secretory granule showed no phosphatidylinositol 4-phosphate-degrading activity. These results suggest the presence in the tumour beta-cell of Ca2+-sensitive mechanisms responsible for the metabolism of polyphosphoinositides in the secretory granule and plasma membrane.


1989 ◽  
Vol 257 (2) ◽  
pp. 431-437 ◽  
Author(s):  
P C Guest ◽  
C J Rhodes ◽  
J C Hutton

The regulation of the biosynthesis of the insulin-secretory-granule matrix proteins insulin II, chromogranin A and carboxypeptidase H was studied in isolated rat islets of Langerhans. Islets were labelled with [35S]-methionine, and incorporation into total protein was determined by trichloroacetic acid precipitation and that into specific proteins by immunoprecipitation followed by polyacrylamide-gel electrophoresis and fluorography. Islets incubated in the presence of 16.7 mM-glucose incorporated 3 times as much [35S]-methionine into total protein as did islets incubated with 2.8 mM-glucose. The same conditions produced more than a 20-fold increase in incorporation into both proinsulin and chromogranin A, with no observable effect on carboxypeptidase H. The concentration-dependencies of the glucose-stimulated synthesis of chromogranin A and proinsulin were parallel, and in both cases the response to 16.7 mM-glucose was typified by an initial lag of 20 min, followed by a rapid activation to a new steady state over the ensuing 40 min. Synthesis of total protein, although activated to a lesser extent, responded with similar kinetics. Extracellular Ca2+ depletion did not affect the basal or glucose-stimulated biosynthesis of any of the proteins under investigation. Mannoheptulose (20 mM) abolished glucose-stimulated synthesis of insulin, chromogranin A and total protein, but had no effect on the synthesis of carboxypeptidase H. It is concluded that the biosynthesis of insulin and chromogranin A is regulated principally at the translational level by the same intracellular signal generated from the metabolism of glucose. Such regulation is not common to all insulin-secretory-granule proteins, since the synthesis of carboxypeptidase H was unaffected by the same stimulus.


Sign in / Sign up

Export Citation Format

Share Document