scholarly journals Differential effects of fluoride on adenylate cyclase activity and guanine nucleotide regulation of agonist high-affinity receptor binding

1988 ◽  
Vol 254 (1) ◽  
pp. 15-20 ◽  
Author(s):  
J M Stadel ◽  
S T Crooke

Fluoride ion, presumably an Al3+-F- complex, has been proposed to activate the guanine nucleotide regulatory protein (G-protein) of the visual system, transducin, by associating with GDP at the nucleotide-binding site and thus mimicking the effects of non-hydrolysable GTP analogues [Bigay, Deterre, Pfister & Chabre (1985) FEBS Lett. 191, 181-85]. We have examined this proposed model by using the adenylate cyclase complexes of frog erythrocytes, S49 lymphoma cells and human platelets. Preincubation of plasma membranes from frog erythrocytes and S49 cells with 20 mM-fluoride for 20 min at 30 degrees C strongly stimulated adenylate cyclase activity. In contrast, the preactivated membranes were still able to bind beta-adrenergic agonist with high affinity, as determined by radioligand-binding techniques. Moreover, high-affinity agonist binding in fluoride-treated membranes was fully sensitive to guanine nucleotide, which decreased beta-adrenergic-receptor affinity for agonist. Very similar results were obtained for [3H]prostaglandin E1 binding to S49 membranes pretreated with fluoride. Incubation of human platelet membranes with increasing concentrations of fluoride (1-50 mM) resulted in biphasic regulation of adenylate cyclase activity, with inhibition observed at concentrations greater than 10 mM. Preincubation of platelet membranes with 20 mM-fluoride did not affect agonist high-affinity binding to alpha 2-adrenergic receptors, nor receptor regulation by guanine nucleotide. These results suggest that the model developed from the study of transducin may not be generally applicable to the G-proteins of the adenylate cyclase system.

1988 ◽  
Vol 249 (2) ◽  
pp. 537-542 ◽  
Author(s):  
D Gawler ◽  
G Milligan ◽  
M D Houslay

Insulin caused the inhibition of glucagon-stimulated adenylate cyclase activity in liver plasma membranes, but failed to inhibit this activity in liver membranes from rats made diabetic by treatment with either alloxan or streptozotocin. Treatment of streptozotocin-diabetic rats with insulin, to normalize their blood glucose concentrations, restored this action of insulin. Rats treated with the biguanide drug metformin exhibited a decreased content of the inhibitory guanine nucleotide regulatory protein Gi in liver plasma membranes assessed both structurally, by using a specific polyclonal antibody (AS7), and functionally. Treatment of normal rats with metformin did not alter insulin's ability to inhibit adenylate cyclase in liver plasma membranes; however, metformin treatment of streptozotocin-diabetic rats completely restored this inhibitory action of insulin. Liver plasma membranes from streptozotocin-diabetic animals which either had or had not been treated with metformin had contents of Gi which were less than 10% of those seen in control animals. We conclude that: (i) insulin does not inhibit adenylate cyclase activity through the inhibitory guanine nucleotide regulatory protein Gi; (ii) streptozotocin- and alloxan-induced diabetes elicit a selective insulin-resistant state; and (iii) metformin can exert a post-receptor effect, at the level of the liver plasma membrane, which restores the ability of insulin to inhibit adenylate cyclase.


1984 ◽  
Vol 247 (5) ◽  
pp. C342-C349 ◽  
Author(s):  
K. J. Popovich ◽  
C. Hiller ◽  
A. Hough ◽  
J. S. Norris ◽  
L. E. Cornett

To establish a model of airway smooth muscle function we studied binding of [3H]dihydroalprenolol [( 3H]DHA), a beta-adrenergic antagonist, to membrane preparations of porcine trachealis muscle and investigated the response of adenylate cyclase to l-isoproterenol in tissue and plasma membranes. [3H]DHA binding was of high affinity (Kd = 1.0 +/- 0.1 nM), was saturable (Bmax = 87.6 +/- 13.2 fmol/mg protein), and was 90% beta 2 and 10% beta 1. Adenylate cyclase activity in the membrane preparation was (in pmol.10 min-1.mg protein-1 +/- SE): basal 420 +/- 74, guanosine 5'-triphosphate (GTP) (10 micron) 600 +/- 45, GTP (10 microM) + l-isoproterenol (100 microM) 660 +/- 63, NaF (10 mM) 1,500 +/- 134, and forskolin (100 microM) 3,000 +/- 410. Guanosine 5'-diphosphate (GDP) and GTP were active cofactors; l-isoproterenol appeared to function as an effector exchanging GTP for GDP on the guanine nucleotide regulatory protein. There was close agreement of the effective dose (ED50) of the l-isoproterenol-induced relaxation (0.95 +/- 0.45 microM) and the inhibitory constant of l-isoproterenol binding (0.39 +/- 0.10 microM). l-Isoproterenol (100 microM) induced a 100% increase in adenosine 3',5'-cyclic monophosphate (cAMP) levels in tissue strips over basal activity. Investigation of the difference in adenylate cyclase activity between tissue and plasma membranes revealed that l-isoproterenol responsive adenylate cyclase was diminished after initial homogenization. Electron microscopy demonstrated disruption of all cells at this early stage of preparation. The decrease in l-isoproterenol responsive adenylate cyclase following cell rupture is different from other tissues and suggests a difference in the actions of beta-agonist in smooth muscle compared with other tissues.


1974 ◽  
Vol 77 (3) ◽  
pp. 604-611 ◽  
Author(s):  
Norman H. Bell ◽  
John Fleming ◽  
Joanne Benedict ◽  
Lisa Pantzer

ABSTRACT Previous studies in other laboratories had indicated that some of the effects of parathyroid hormone on skeletal tissue and the renal tubule to influence ion metabolism can be produced by beta-adrenergic stimulation. Studies were carried out to determine whether the same adenylate cyclase system in rat renal cortex is activated by parathyroid hormone and isoproterenol. At maximal effective concentration of dose response, parathyroid hormone (2 × −5 m) increased adenylate cyclase activity by some 415 per cent, isoproterenol (10−6 m) increased activity by some 40 to 50 per cent, vasopressin (10−5 m) increased activity by some 96 per cent and porcine calcitonin (10−5 m) increased activity by some 92 per cent. Dl-propranolol (10−5 m), a beta-adrenergic receptor blocking agent, prevented the increase in enzyme activity produced by isoproterenol (10−6 m), did not diminish the increase in activity produced by parathyroid hormone (10−6 m) and did not influence basal adenylate cyclase activity by itself. The combined maximal concentrations of isoproterenol together with either parathyroid hormone, vasopressin or porcine calcitonin were additive. These results indicate that there is an adenylate cyclase system in rat renal cortex which can be activated by beta-adrenergic stimulation with isoproterenol, and is separate from the systems responsive to parathyroid hormone, vasopressin or calcitonin.


1983 ◽  
Vol 61 (7) ◽  
pp. 547-552 ◽  
Author(s):  
Bernard P. Schimmer

Fractions enriched in plasma membranes were prepared from the Y1 mouse adrenocortical tumor cell line and were characterized with respect to adenylate cyclase activity. Optimal requirements of the adenylate cyclase system for guanyl nucleotides, Mg2+, ATP, and corticotropin (ACTH) were determined. The sensitivity of the adenylate cyclase system to ACTH1–24 in plasma membrane fractions was comparable with that observed in isolated intact cells. Polycations such as poly-L-arginine and histone competitively inhibited the action of ACTH1–24, supporting the view that the affinity of ACTH for the adenylate cyclase system is determined by the basic core of amino acids at residues 15–18. ACTH1–24 was at least one order of magnitude more potent than ACTH1–39 in stimulating adenylate cyclase activity in plasma membrane fractions.


1982 ◽  
Vol 242 (5) ◽  
pp. F457-F462
Author(s):  
E. Bellorin-Font ◽  
J. Tamayo ◽  
K. J. Martin

Metal ions play important roles in the regulation of the activation of adenylate cyclase. Previous studies have suggested that an important site of action of metal ions is at or closely related to the nucleotide regulatory protein. The present studies examine the nature of the regulation of enzyme activity by divalent cations and the influence of Mn2+ on hormone binding and stimulation of adenylate cyclase. Studies were performed in canine renal cortical membranes. Substitution of Mg2+ by Mn2+ was associated with a progressive decline in the ability of GTP or PTH to stimulate adenylate cyclase activity. Mn2+ did not alter specific binding of an iodinated PTH analogue. However, in spite of the loss of guanine nucleotide stimulation of enzyme activity, the effects of guanine nucleotide on PTH binding were not altered in the presence of Mn2+. Substitution of Mg2+ by Mn2+ abolished the inhibitory effect of Ca2+ on basal adenylate cyclase activity. Similarly, the effects of GTP or PTH to enhance the inhibitory effects of Ca2+ on enzyme activity were abolished in the presence of Mn2+. Since Mg2+ and Ca2+ compete for a common allosteric site and Mn2+ abolished the effects of these cations, it would appear that Mn2+ also competes for the binding site of Mg2+ and Ca2+. The present studies demonstrating that Mn2+ does not affect hormone binding or the actions of guanine nucleotides on hormone binding yet totally eliminates the effect of GTP on enzyme activity indicate that the effect of Mn2+ occurs at the level of the interactions of the nucleotide regulatory component with the catalytic unit. In addition, these data suggest that there are two functionally distinct sites of guanine nucleotides with different ionic requirements.


1983 ◽  
Vol 214 (1) ◽  
pp. 93-98 ◽  
Author(s):  
C M Heyworth ◽  
M D Houslay

Membrane fractions obtained from hepatocytes treated with glucagon exhibited a decreased glucagon (with or without GTP)-stimulated adenylate cyclase activity. A maximum effect was seen in around 5 min. No change in the rate of cyclic AMP production was observed for the basal, NaF-, p[NH]ppG (guanosine 5′-[beta, gamma-imido]-triphosphate)- and GTP-stimulated states of the enzyme. The lag observed in the p[NH]ppG-stimulated adenylate cyclase activity of native membranes was abolished when membranes from glucagon-pretreated cells were used. When Mn2+ replaced Mg2+ in the assays, the magnitude of the apparent desensitization was decreased. Mn2+ abolished the lag of onset of p[NH]ppG-stimulated activity in native membranes. The desensitization process was dose-dependent on glucagon, which exhibited a Ka of 4 X 10(-10) M. Depletion of intracellular ATP did not affect this process. It is suggested that this desensitization occurs at the level of the guanine nucleotide-regulatory protein.


1984 ◽  
Vol 222 (1) ◽  
pp. 189-194 ◽  
Author(s):  
C M Heyworth ◽  
E Hanski ◽  
M D Houslay

Treatment of intact hepatocytes with islet-activating protein, from Bordatella pertussis, led to a pronounced increase in the ability of glucagon to raise intracellular cyclic AMP concentrations. Islet-activating protein, however, caused no apparent increase in the intracellular concentration of cyclic AMP under basal conditions. These effects were attributed to an enhanced ability of adenylate cyclase, in membranes from hepatocytes treated with islet-activating protein, to be stimulated by glucagon. When forskolin was used to amplify the basal adenylate cyclase activity, elevated GTP concentrations were shown to inhibit adenylate cyclase activity in membranes from control hepatocytes. This inhibitory effect of GTP was abolished if the hepatocytes had been pre-treated with islet activating protein. In isolated liver plasma membranes, islet-activating protein caused the NAD-dependent ribosylation of a Mr-40000 protein, the putative inhibitory guanine nucleotide regulatory protein, Ni. This effect was inhibited if guanosine 5′-[beta‐thio]diphosphate rather than GTP was present in the ribosylation incubations. The ability of glucagon to uncouple or desensitize the activity of adenylate cyclase in intact hepatocytes was also blocked by pre-treating hepatocytes with islet-activating protein. Islet-activating protein thus heightens the response of hepatocytes to the stimulatory hormone glucagon. It achieves this by both inhibiting the expression of desensitization and also removing a residual inhibitory input expressed in the presence of glucagon.


1989 ◽  
Vol 257 (2) ◽  
pp. 407-411 ◽  
Author(s):  
S Shima ◽  
N Okeyama ◽  
N Akamatu

Effects of chronic oestrogen treatment on catecholamine- and glucagon-sensitive adenylate cyclase activity and glucose output in hepatocytes of castrated male rats were studied. In hepatocytes from male intact or castrated rats, the beta-adrenergic agonist isoprenaline did not stimulate adenylate cyclase activity and glycogenolysis, but glucagon markedly stimulated all these activities. Treatment of castrated animals with 17 beta-oestradiol for 7 days led to the appearance of beta-adrenergic-stimulated increases in both cyclic AMP generation and glucose output. The basal, glucagon- or fluoride-stimulated activities of adenylate cyclase of hepatic membranes prepared from oestrogen-treated rats were similar to those of control animals. Treatment with oestrogen did not influence the number or affinity of beta-adrenergic receptors. In hepatic plasma membranes from control rats, GTP failed to decrease the affinity of beta-adrenergic receptors for agonists, whereas the GTP-induced shift was apparently observed in those from oestrogen-treated animals. These results suggest that oestrogen is able to facilitate the coupling of hepatic beta-adrenergic receptors to the enzyme by increasing the effectiveness of receptor-guanine nucleotide regulation.


Sign in / Sign up

Export Citation Format

Share Document