scholarly journals Action of guanosine 5′-[β-thio]diphosphate on thrombin-induced activation and Ca2+ mobilization in saponin-permeabilized and intact human platelets

1988 ◽  
Vol 255 (3) ◽  
pp. 885-893 ◽  
Author(s):  
K S Authi ◽  
G H R Rao ◽  
B J Evenden ◽  
N Crawford

The non-hydrolysable guanine analogues guanosine 5′-[gamma-thio]triphosphate (GTP[S]) and guanosine 5′-[beta-thio]diphosphate (GDP[S]) have been used extensively (as promoters and inhibitors respectively) to probe the importance of G-protein function. We report on the use of GDP[S] in permeabilized and intact platelets. The stimulatory analogue GTP[S] (9-60 microM) induces shape change, aggregation and 5-hydroxy[14C]-tryptamine secretion when added to saponin (12-14 micrograms/ml)-permeabilized platelets, but not to intact platelets. In line with the activation responses in permeabilized cells, GTP[S] induces an increase in [32P]-phosphatidic acid, which is indicative of phospholipase C activity. GDP[S] (greater than 400 microM) totally inhibits GTP[S] (90 microM)-stimulated phospholipase C activity and functional responses in saponized platelets. GDP[S] (1 mM) was also effective at inhibiting low-dose thrombin (0.1 unit/ml)-induced aggregation and secretion responses (without affecting shape change) in permeabilized platelets with inhibition of [32P]-phosphatidic acid formation. At higher doses of thrombin (greater than 0.5 unit/ml), both functional responses and [32P]phosphatidic acid formation are restored in the presence of GDP[S]. Studies on intact cells revealed that GDP[S] was as effective at inhibiting low-dose thrombin-induced functional responses as in the permeabilized cells, but there was no inhibition of [32P]phosphatidic acid formation, indicating that the agent is nonmembrane-penetrating. This reflected the fact that GDP[S] has additional inhibitory sites on the surface of platelets. In Fura-2-loaded cells GDP[S] inhibited thrombin-induced Ca2+ mobilization, as measured by Fura-2 fluorescence, in a dose-dependent manner. In studies with and without Ca2+ present on the outside, the effect of GDP[S] was to block Ca2+ influx. These studies indicate that, although GDP[S] is a valuable tool in studying G-protein function in permeabilized cells, it also has inhibitory activities on the surface of platelets, and one of these has been identified as an effect on the Ca2+-influx channel after agonist stimulation.

1996 ◽  
Vol 314 (3) ◽  
pp. 805-810 ◽  
Author(s):  
Geeta S. VEMURI ◽  
Jin ZHANG ◽  
Rusong HUANG ◽  
James H. KEEN ◽  
Susan E. RITTENHOUSE

We have investigated thrombin-stimulated morphological changes and the activation of phosphoinositide 3-kinase (PI 3-K), as manifested by the accumulation of PtdIns(3,4)P2 and PtdIns(3,4,5)P3 (labelled with 32P or myo-[3H]inositol), in CHRF-288 cells, a leukaemic cell line derived from a platelet progenitor cell. We report that these cells, when exposed to thrombin or SFLLRN (the peptide Ser-Phe-Leu-Leu-Arg-Asn, a thrombin-receptor ligand) rapidly change shape, forming membrane ‘blebs’, detectable by differential interference contrast or confocal microscopy, as well as labelled 3-phosphorylated phosphoinositides. The ‘blebs’ are distinguishable from ‘ruffles’ or lamellae, since they do not contain phalloidin-detectable actin. Studies with permeabilized cells indicate that PI 3-K is activated synergistically by thrombin+guanosine 5´-[γ-thio]triphosphate. Two forms of PI 3-K, i.e. PI 3-K(γ) and p85/PI 3-K, regulated by Gβγ subunits of heterotrimeric G-protein and the small G-protein Rho, respectively, are present in these cells, as is true for platelets. Wortmannin, a known potent and specific inhibitor of PI 3-K activities, inhibits thrombin-stimulated accumulation of 3-phosphorylated phosphoinositides in a dose-dependent manner (IC50 ~ 10nM), without affecting phospholipase C activation. Pretreatment of CHRF-288 cells with either wortmannin (100 nM) or an unrelated synthetic PI 3-K inhibitor, LY294002 (50 μM), abolishes thrombin-receptor-stimulated blebbing. These results suggest that thrombin-stimulated accumulation of 3-phosphorylated phosphoinositide(s) is required for the shape-change response in CHRF-288 cells.


Planta ◽  
2006 ◽  
Vol 225 (2) ◽  
pp. 393-401 ◽  
Author(s):  
Ana Ramos-Díaz ◽  
Ligia Brito-Argáez ◽  
Teun Munnik ◽  
S. M. Teresa Hernández-Sotomayor

1989 ◽  
Vol 67 (7) ◽  
pp. 332-336 ◽  
Author(s):  
Archibald McNicol ◽  
Jon M. Gerrard ◽  
D. Euan MacIntyre

The possibility that thrombin-induced platelet reactivity could occur via both a receptor-related and a proteolytic process was examined. Thrombin elicited the formation of considerably more [32P)phosphatidic acid (an index of phospholipase C catalysed phosphoinositide metabolism) than did platelet activating factor, 5-hydroxytryptamine, ADP, and the thromboxane A2 analogue EP171, when these agents were added either alone or in combination. Co-addition of thrombin and EP171 did not evoke significantly more [32P]phosphatidic acid than did thrombin alone. The protease inhibitor leupeptin, decreased but did not abolish [32P]phosphatidic acid formation elicited by either thrombin alone or thrombin in combination with EP171. The serine protease, trypsin, stimulated an increase in [32P]phosphatidic acid and this effect was additive with that of EP171. This augmentation by trypsin of EP171-induced [32P]phosphatidic acid formation was inhibited by leupeptin. These results are consistent with the concept that thrombin-induced activation of phospholipase C occurs by two distinct mechanisms: one via proteolysis, which is sensitive to leupeptin, and the other via receptor activation, a process shared by EP171. The individual components of this dual mechanism can be mimicked by the co-addition of a receptor-directed agonist (EP171) and a proteolytic agent (trypsin).Key words: platelet, thrombin, proteolysis, phosphoinositide.


1993 ◽  
Vol 296 (1) ◽  
pp. 245-251 ◽  
Author(s):  
J F Klinker ◽  
A Höer ◽  
I Schwaner ◽  
S Offermanns ◽  
K Wenzel-Seifert ◽  
...  

Synthetic lipopeptides activate superoxide-anion (O2-) formation in human neutrophils in a pertussis-toxin (PTX)-sensitive manner, suggesting the involvement of G-proteins of the Gi family in the signal-transduction pathway. We compared G-protein activation by lipopeptides and the chemotactic peptide N-formylmethionyl-leucyl-phenylalanine (fMLP) in dibutyryl-cyclic-AMP-differentiated HL-60 cells. The lipopeptide (2S)-2-palmitoylamino-6-palmitoyloxymethyl-7-palmitoyloxy heptanoyl-SK4 (Pam3AhhSK4) and fMLP activated high-affinity GTPase, i.e. the enzymic activity of G-protein alpha-subunits, in HL-60 membranes in a time- and protein-dependent manner, but they had no effect on Mg(2+)-ATPase and Na+/K(+)-ATPase. Pam3AhhSK4 and fMLP increased Vmax. of GTP hydrolysis. Pam3AhhSK4 activated GTP hydrolysis with half-maximal and maximal effects at about 2 microM and 10 microM respectively. Other lipopeptides activated GTP hydrolysis as well. Lipopeptides were less effective than fMLP to activate GTPase. In membranes from PTX-treated cells, the stimulatory effects of lipopeptides and fMLP on GTPase were abolished. In N-ethylmaleimide-treated membranes, the relative stimulatory effect of Pam3AhhSK4 on GTP hydrolysis was enhanced, whereas that of fMLP was diminished. fMLP and Pam3AhhSK4 activated GTPase in an over-additive manner in N-ethylmaleimide-treated membranes. Unlike fMLP, Pam3AhhSK4 did not enhance incorporation of GTP azidoanilide into, and cholera-toxin-catalysed ADP-ribosylation of Gi-protein alpha-subunits in, HL-60 membranes and did not induce rises in cytosolic Ca2+ concentration. Pam3AhhSK4 and fMLP stimulated phosphatidic acid formation in a PTX-sensitive manner. Pam3AhhSK4 itself did not activate O2- formation, but potentiated the stimulatory effects of fMLP. Our data suggest that (i) lipopeptides activate the GTPase of Gi-proteins, (ii) lipopeptides and fMLP activate Gi-proteins differently, (iii) lipopeptides stimulate phospholipase D via Gi-proteins, and (iv) phosphatidic acid formation is not sufficient for activation of O2- formation.


2002 ◽  
Vol 88 (09) ◽  
pp. 495-502 ◽  
Author(s):  
Michael Rolf ◽  
Martyn Mahaut-Smith

SummaryG-protein-coupled P2Y1 and P2Y12 receptors play key roles in platelet activation, however the importance of ionotropic P2X1 receptors remains unclear. Platelet P2X1 responses are highly labile in vitro, but were greatly enhanced by increasing [Ca2+]o in the range 1–10 mM. The P2X1 agonist α,β-MeATP stimulated a shape change which saturated at peak [Ca2+]i of ≥ 400 nM, without evidence for aggregation. The maximal P2X1-evoked transmission decrease was 82% of that obtained via P2Y1 receptors. α., β-MeATP caused a disc to sphere transformation in virtually all platelets, but lacked the long processes produced by ADP. Following block of P2Y1 receptors with A3P5PS, co-stimulation with α., β-MeATP and ADP failed to induce aggregation despite the generation of peak [Ca2+]i responses similar to those stimulated via P2Y1 receptors. Therefore early, transient Ca2+ influx via P2X1 receptors can contribute to platelet activation by stimulating a significant morphological change, but does not readily synergise with P2Y12 receptors to support aggregation.


Blood ◽  
2004 ◽  
Vol 104 (5) ◽  
pp. 1335-1343 ◽  
Author(s):  
Haripriya Shankar ◽  
Swaminathan Murugappan ◽  
Soochong Kim ◽  
Jianguo Jin ◽  
Zhongren Ding ◽  
...  

Abstract The role of the Gi-coupled platelet P2Y12 receptor in platelet function has been well established. However, the functional effector or effectors contributing directly to αIIbβ3 activation in human platelets has not been delineated. As the P2Y12 receptor has been shown to activate G protein–gated, inwardly rectifying potassium (GIRK) channels, we investigated whether GIRK channels mediate any of the functional responses of the platelet P2Y12 receptor. Western blot analysis revealed that platelets express GIRK1, GIRK2, and GIRK4. In aspirin-treated and washed human platelets, 2 structurally distinct GIRK inhibitors, SCH23390 (R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride) and U50488H (trans-(±)-3,4-dichloro-N-methyl-N-[2-(pyrrolidinyl)cyclohexyl] benzeneacetamide methanesulfonate), inhibited adenosine diphosphate (ADP)–, 2-methylthioADP (2-MeSADP)–, U46619-, and low-dose thrombin–mediated platelet aggregation. However, the GIRK channel inhibitors did not affect platelet aggregation induced by high concentrations of thrombin, AYPGKF, or convulxin. Furthermore, the GIRK channel inhibitors reversed SFLLRN-induced platelet aggregation, inhibited the P2Y12-mediated potentiation of dense granule secretion and Akt phosphorylation, and did not affect the agonist-induced Gq-mediated platelet shape change and intracellular calcium mobilization. Unlike AR-C 69931MX, a P2Y12 receptor–selective antagonist, the GIRK channel blockers did not affect the ADP-induced adenlylyl cyclase inhibition, indicating that they do not directly antagonize the P2Y12 receptor. We conclude that GIRK channels are important functional effectors of the P2Y12 receptor in human platelets.


Sign in / Sign up

Export Citation Format

Share Document