scholarly journals Electron microscopy of cervical-mucus glycoproteins and fragments therefrom. The use of colloidal gold to make visible ‘naked’ protein regions

1990 ◽  
Vol 265 (1) ◽  
pp. 169-177 ◽  
Author(s):  
J K Sheehan ◽  
I Carlstedt

Subunits of human cervical-mucus glycoproteins obtained by reductive cleavage of whole mucins and high-Mr glycopeptides (T-domains) obtained after their trypsin digestion were studied with electron microscopy after spreading the macromolecules in a monolayer of benzyldimethylalkylammonium chloride. Subunits were observed as linear and apparently flexible particles, with number- and weight-average lengths of 390 nm and 460 nm respectively. T-domains randomly distributed on the grid have number- and weight-average lengths of 90 nm and 103 nm respectively, whereas when aligned (possibly stretched by flow) they were longer, with number-average and weight-average lengths of 150 nm and 170 nm respectively. Subunits complexed with gold appeared as segmented structures, with a distribution of inter-gold distances similar to the length distribution for the relaxed T-domains. The whole mucins had few binding sites for gold, suggesting that reduction exposes hydrophobic protein-rich regions with high affinity for gold. Most T-domains had a binding site at one end, indicating the presence of a residual protruding naked peptide region. We conclude that mucins are assembled from subunits joined end-to-end, and that each subunit consists of alternating oligosaccharide ‘clusters’ (approx. 100 nm) and naked peptide regions which have (after reduction) a high affinity for colloidal gold.

2008 ◽  
Vol 412 (1) ◽  
pp. 103-112 ◽  
Author(s):  
Doreen Thor ◽  
Angela Schulz ◽  
Thomas Hermsdorf ◽  
Torsten Schöneberg

GPCRs (G-protein-coupled receptors) exist in a spontaneous equilibrium between active and inactive conformations that are stabilized by agonists and inverse agonists respectively. Because ligand binding of agonists and inverse agonists often occurs in a competitive manner, one can assume an overlap between both binding sites. Only a few studies report mutations in GPCRs that convert receptor blockers into agonists by unknown mechanisms. Taking advantage of a genetically modified yeast strain, we screened libraries of mutant M3Rs {M3 mAChRs [muscarinic ACh (acetylcholine) receptors)]} and identified 13 mutants which could be activated by atropine (EC50 0.3–10 μM), an inverse agonist on wild-type M3R. Many of the mutations sensitizing M3R to atropine activation were located at the junction of intracellular loop 3 and helix 6, a region known to be involved in G-protein coupling. In addition to atropine, the pharmacological switch was found for other M3R blockers such as scopolamine, pirenzepine and oxybutynine. However, atropine functions as an agonist on the mutant M3R only when expressed in yeast, but not in mammalian COS-7 cells, although high-affinity ligand binding was comparable in both expression systems. Interestingly, we found that atropine still blocks carbachol-induced activation of the M3R mutants in the yeast expression system by binding at the high-affinity-binding site (Ki ∼10 nM). Our results indicate that blocker-to-agonist converting mutations enable atropine to function as both agonist and antagonist by interaction with two functionally distinct binding sites.


1991 ◽  
Vol 11 (7) ◽  
pp. 3642-3651 ◽  
Author(s):  
C Devlin ◽  
K Tice-Baldwin ◽  
D Shore ◽  
K T Arndt

The major in vitro binding activity to the Saccharomyces cerevisiae HIS4 promoter is due to the RAP1 protein. In the absence of GCN4, BAS1, and BAS2, the RAP1 protein binds to the HIS4 promoter in vivo but cannot efficiently stimulate HIS4 transcription. RAP1, which binds adjacently to BAS2 on the HIS4 promoter, is required for BAS1/BAS2-dependent activation of HIS4 basal-level transcription. In addition, the RAP1-binding site overlaps with the single high-affinity HIS4 GCN4-binding site. Even though RAP1 and GCN4 bind competitively in vitro, RAP1 is required in vivo for (i) the normal steady-state levels of GCN4-dependent HIS4 transcription under nonstarvation conditions and (ii) the rapid increase in GCN4-dependent steady-state HIS4 mRNA levels following amino acid starvation. The presence of the RAP1-binding site in the HIS4 promoter causes a dramatic increase in the micrococcal nuclease sensitivity of two adjacent regions within HIS4 chromatin: one region contains the high-affinity GCN4-binding site, and the other region contains the BAS1- and BAS2-binding sites. These results suggest that RAP1 functions at HIS4 by increasing the accessibility of GCN4, BAS1, and BAS2 to their respective binding sites when these sites are present within chromatin.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1608-1608
Author(s):  
Jian Du ◽  
Dharmesh Vyas ◽  
Qing Xi ◽  
Steven J. Ackerman

Abstract Instructive roles for both GATA-1 and PU.1 have been demonstrated in hematopoiesis, and recent studies have identified both antagonistic and synergistic interactions between them in myeloid gene transcription and lineage development. In prior studies, we reported that PU.1 synergizes with rather than antagonizes GATA-1 for transactivation of a hallmark eosinophil gene, the major basic protein P2 promoter (MBP-P2), which possesses a novel dual (double) GATA-binding site, similar to the palindromic double site in the murine GATA-1 control locus that may specify eosinophil lineage-specific expression of GATA-1 and eosinophil development. To address the transcriptional mechanism for PU.1-GATA-1 synergy through the MBP-P2 dual GATA site, we investigated GATA-1 and PU.1 physical and functonal interactions via their binding sites in the MBP-P2 promoter. DNA binding affinities of GATA-1 and its C- versus N-terminal zinc fingers were assessed for single versus double GATA sites in the presence or absence of PU.1. Our results show that the dual GATA site strongly binds full length GATA-1 with higher affinity than either of the single sites, using both zinc fingers, but that mutant GATA-1 proteins with C-finger or N-finger deletions retain their ability to bind, albeit at lower affinity, to the dual site. DNA binding activities of the two zinc fingers with the dual GATA site were confirmed using peptides containing only the C-finger or N-finger region. Of note, formation of GATA-1 complexes with the dual GATA site was not inhibited by the addition of PU.1, whereas formation of binding complexes for mutants of GATA-1 containing only the C- or N-finger region could be completely inhibited in a dose-response fashion by PU.1. These unique features of PU.1/GATA-1 interactions on a dual versus single GATA-1 site were confirmed using peptides containing only the C- or N-finger regions of GATA-1. Our findings indicate that both zinc fingers of GATA-1 are involved in formation of the high-affinity GATA-1 complex with the dual site. Importantly, we show that the higher affinity dual GATA-1 site complex is not affected by the addition of PU.1, whereas formation of the binding complex with a single GATA-1 site is eliminated by PU.1, emphasizing the different mechanisms of GATA-1/PU.1 interactions on dual versus single GATA binding sites. Functional analyses by transactivation confirmed that synergistic activation of the MBP-P2 promoter by GATA-1 and PU.1 is mediated by their protein-protein interactions through this unique high affinity dual GATA-1 binding site. We suggest two possible mechanisms for PU.1/GATA-1 synergy on dual GATA sites: (1) PU.1 may change GATA-1 conformation and its high affinity for the dual site, enhancing its availability for interaction with the basal transcriptional machinery. Alternatively, (2) PU.1 could impede interactions of GATA-1 with a co-repressor, e.g. FOG-1, which we and others have shown represses GATA-1 function in the eosinophil lineage.


2006 ◽  
Vol 398 (3) ◽  
pp. 393-398 ◽  
Author(s):  
Thomas Gossas ◽  
U. Helena Danielson

Matrix metallopeptidase-12 (MMP-12) binds three calcium ions and a zinc ion, in addition to the catalytic zinc ion. These ions are thought to have a structural role, stabilizing the active conformation of the enzyme. To characterize the importance of Ca2+ binding for MMP-12 activity and the properties of the different Ca2+ sites, the activity as a function of [Ca2+] and the effect of pH was investigated. The enzymatic activity was directly correlated to calcium binding and a Langmuir isotherm for three binding sites described the activity as a function of [Ca2+]. The affinities for two of the binding sites were quantified at several pH values. At pH 7.5, the KD was 0.1 mM for the high-affinity binding site, 5 mM for the intermediate-affinity binding site and >100 mM for the low-affinity binding site. For all three sites, the affinity for calcium decreased with reduced pH, in accordance with the loss of interactions upon protonation of the calcium-co-ordinating aspartate and glutamate carboxylates at acidic pH. The pKa values of the calcium binding sites with the highest and intermediate affinities were determined to be 4.3 and 6.5 respectively. Optimal pH for catalysis was above 7.5. The low-, intermediate- and high-affinity binding sites were assigned on the basis of analysis of three-dimensional-structures of MMP-12. The strong correlation between MMP-12 activity and calcium binding for the physiologically relevant [Ca2+] and pH ranges studied suggest that Ca2+ may be involved in controlling the activity of MMP-12.


2009 ◽  
Vol 191 (19) ◽  
pp. 6075-6081 ◽  
Author(s):  
Santosh Chauhan ◽  
Jaya Sivaswami Tyagi

ABSTRACT DevR activates the transcription of ∼48 genes in response to hypoxia and other stresses and triggers metabolic downshift and dormancy development in Mycobacterium tuberculosis. tgs1 and Rv3131 encode triacylglycerol synthase and a putative nitroreductase, respectively, and both are members of the DevR regulon. This study aimed to understand how a single putative DevR binding site identified previously could sustain powerful induction of divergent tgs1-Rv3131 genes. DNase I footprinting revealed that phosphorylated DevR in fact binds to two sites symmetrically located at −42.5 and −63.5 bp from transcription start points of both genes. DevR first bound to the high-affinity site, P, and cooperatively recruited another DevR molecule to the secondary low-affinity site, S, to activate tgs1-Rv3131 transcription by ∼210- and ∼110-fold, respectively. The presence of a single P site significantly reduced activation of tgs1 expression and abolished Rv3131 activity, reinforcing the requirement of two binding sites for robust expression in both directions. P site inversion abolished tgs1 but not Rv3131 transcription despite DevR occupancy at both sites. The lack of tgs1 expression is most likely due to disruption of its −35 promoter element rather than inversion of the binding site per se. We conclude that (i) an overlap of a DevR binding site and −35 sequence is indispensable for promoter activation, (ii) DevR interaction with two binding sites is obligatory for synergistic activation of tgs1-Rv3131 promoters, and (iii) DevR interaction with binding sites of different affinities offers scope for temporal and differential expression of target genes.


1989 ◽  
Vol 37 (2) ◽  
pp. 249-256 ◽  
Author(s):  
K Fujimoto ◽  
N Araki ◽  
K S Ogawa ◽  
S Kondo ◽  
T Kitaoka ◽  
...  

Calmodulin (CaM) has been implicated as a multifunctional regulator of Ca2+ in the cytoplasm of cells. We have recently introduced biologically active colloidal gold-labeled CaM as a marker for identifying potential CaM binding sites (unoccupied by endogenous CaM at the time of fixation) by electron microscopy and have stained frozen thin sections of rat cardiac muscle with this conjugate. In the presence of Ca2+, gold particles indicating CaM binding sites were found localized on the sarcoplasmic reticulum, mitochondria, and gap junctions. Control tissue sections treated with EGTA or exposed to excess amounts of unlabeled native CaM before staining showed no binding. We believe that cytochemistry of potential CaM binding sites revealed by staining with labeled exogenous CaM is useful in correlating known biochemical reactions of CaM with particular cell activities.


1981 ◽  
Vol 91 (1) ◽  
pp. 155-161 ◽  
Author(s):  
L. C. MURPHY ◽  
R. L. SUTHERLAND

A high-affinity, saturable antioestrogen binding site, which does not bind oestradiol, has been reported to exist in a number of oestrogen target tissues but not in the immature rat uterus. This study reports the results of a more thorough search for this site in immature rat uterine cytosol. When concentrations of uterine cytoplasmic oestrogen receptor were selectively depleted by translocation of 90–95% of the cytoplasmic oestrogen receptor to the nucleus, saturation analysis studies revealed that the antioestrogens, tamoxifen and CI 628, were bound to high-affinity, saturable binding sites which were present at about 2·5 times the concentration of the residual oestrogen receptor sites. Oestradiol could only partially inhibit the binding of tritiated antioestrogens to their saturable binding sites in this material indicating that a significant proportion of these sites were distinct from the oestrogen receptor sites. This was confirmed in experiments where oestrogen receptor sites were saturated in vitro with oestradiol and high-affinity, saturable sites for CI 628 and tamoxifen were still present. The CI 628 and tamoxifen had high affinity for these sites with dissociation constants of 1·0–1·6 nmol/l. These specific antioestrogen binding sites were present at about 5% of the concentration of oestrogen receptors in normal immature rat uterine cytosol which probably explains their previous lack of detection in this material.


2017 ◽  
Author(s):  
Gregory M. Martin ◽  
Balamurugan Kandasamy ◽  
Frank DiMaio ◽  
Craig Yoshioka ◽  
Show-Ling Shyng

AbstractSulfonylureas are anti-diabetic medications that act by inhibiting pancreatic KATP channels composed of SUR1 and Kir6.2. The mechanism by which these drugs interact with and inhibit the channel has been extensively investigated, yet it remains unclear where the drug binding pocket resides. Here, we present a cryo-EM structure of the channel bound to a high-affinity sulfonylurea drug glibenclamide and ATP at 3.8Å resolution, which reveals in unprecedented details of the ATP and glibenclamide binding sites. Importantly, the structure shows for the first time that glibenclamide is lodged in the transmembrane bundle of the SUR1-ABC core connected to the first nucleotide binding domain near the inner leaflet of the lipid bilayer. Mutation of residues predicted to interact with glibenclamide in our model led to reduced sensitivity to glibenclamide. Our structure provides novel mechanistic insights of how sulfonylureas and ATP interact with the KATP channel complex to inhibit channel activity.


2019 ◽  
Vol 5 (6) ◽  
pp. eaax2650 ◽  
Author(s):  
Tien-Jui Yen ◽  
Marco Lolicato ◽  
Rhiannon Thomas-Tran ◽  
J. Du Bois ◽  
Daniel L. Minor

Dinoflagelates and cyanobacteria produce saxitoxin (STX), a lethal bis-guanidinium neurotoxin causing paralytic shellfish poisoning. A number of metazoans have soluble STX-binding proteins that may prevent STX intoxication. However, their STX molecular recognition mechanisms remain unknown. Here, we present structures of saxiphilin (Sxph), a bullfrog high-affinity STX-binding protein, alone and bound to STX. The structures reveal a novel high-affinity STX-binding site built from a “proto-pocket” on a transferrin scaffold that also bears thyroglobulin domain protease inhibitor repeats. Comparison of Sxph and voltage-gated sodium channel STX-binding sites reveals a convergent toxin recognition strategy comprising a largely rigid binding site where acidic side chains and a cation-π interaction engage STX. These studies reveal molecular rules for STX recognition, outline how a toxin-binding site can be built on a naïve scaffold, and open a path to developing protein sensors for environmental STX monitoring and new biologics for STX intoxication mitigation.


1991 ◽  
Vol 274 (3) ◽  
pp. 861-867 ◽  
Author(s):  
R A J Challiss ◽  
A L Willcocks ◽  
B Mulloy ◽  
B V L Potter ◽  
S R Nahorski

1. The properties of specific Ins(1,4,5)P3- and Ins(1,3,4,5)P4-binding sites have been compared in a crude ‘P2’ cerebellar membrane fraction. 2. A homogeneous population of [3H]Ins(1,4,5)P3-binding sites was present (KD 23.1 +/- 3.6 nM) at high density (Bmax. 11.9 +/- 1.8 pmol/mg of protein); whereas data obtained for [32P]Ins(1,3,4,5)P4 specific binding were best fitted to a two-site model, the high-affinity binding component (KD 2.6 +/- 0.7 nM) constituted 64.2 +/- 4.3% of the total population and was present at relatively low density (Bmax. 187 +/- 27 fmol/mg of protein). 3. The two high-affinity inositol polyphosphate-binding sites exhibited markedly different pH optima for radioligand binding, allowing the two sites to be independently investigated. At pH 8.0, [3H]Ins(1,4,5)P3 binding was maximal, whereas [32P]Ins(1,3,4,5)P4 specific binding was very low; conversely, at pH 5.0, [32P]Ins(1,3,4,5)P4 binding was maximal, whereas [3H]Ins(1,4,5)P3 binding was undetectably low. 4. Both inositol polyphosphate-binding sites exhibited marked positional and stereo-specificity. Of the analogues studied, only phosphorothioate substitution to form inositol 1,4,5-trisphosphorothioate was tolerated at the Ins(1,4,5)P3-binding site, with only a 2-3-fold loss of binding activity. Addition of a glyceroyl moiety at the 1-phosphate position or addition of further phosphate substituents at the 3- or 6-positions caused dramatic losses in displacing activity. Similarly, complete phosphorothioate substitution of Ins(1,3,4,5)P4 caused an approx. 6-fold loss of binding activity at the [32P]Ins(1,3,4,5)P4-binding site, whereas Ins(1,4,5,6)P4, Ins(1,3,4,6)P4, Ins(1,4,5)P3 and Ins(1,3,4,5,6)P5 were bound at least 100-fold weaker at this site. Therefore, only the phosphorothioate derivatives retained high affinity and selectivity for the two inositol polyphosphate-binding sites. 5. Heparin and pentosan polysulphate were potent but non-selective inhibitors at Ins(1,4,5)P3- and Ins(1,3,4,5)P4-binding sites. N-Desulphation (with or without N-reacetylation) of heparin decreased inhibitory activity at the Ins(1,4,5)P3-, but not at the Ins(1,3,4,5)P4-binding site; however, the selectivity of this effect was only about 4-fold. O- and N-desulphated N-reacetylated heparin was essentially inactive at both sites. 6. The results are discussed with respect to the separate identities of the inositol polyphosphate-binding sites.


Sign in / Sign up

Export Citation Format

Share Document