scholarly journals Protein kinase C is involved in desensitization of muscarinic receptors induced by phorbol esters but not by receptor agonists

1990 ◽  
Vol 267 (1) ◽  
pp. 23-29 ◽  
Author(s):  
W S Lai ◽  
T B Rogers ◽  
E E el-Fakahany

Preincubation with receptor agonists or phorbol esters desensitized muscarinic-receptor-mediated [3H]cyclic GMP responses in mouse neuroblastoma N1E-115 cells. However, desensitization mediated by phorbol esters was heterologous, whereas that effected by receptor agonist was specific towards the muscarinic receptors. In addition, there was no loss of cell surface muscarinic receptors, as measured by the binding of the hydrophilic ligand [3H]N-methylscopolamine, when cells were treated with phorbol esters, but receptor-agonist-induced desensitization was accompanied by a decrease in cell surface receptor density. We examined the role of protein kinase C (PKC) in the desensitization of muscarinic receptors by employing a kinase inhibitor and by down-regulation of PKC by long-term incubation of cells with phorbol esters. Whereas these manoeuvres had marked effects on phorbol-ester-induced desensitization of muscarinic responses, they did not block agonist-induced down-regulation and desensitization of muscarinic receptors. In addition, when phosphoinositide hydrolysis was suppressed, the muscarinic agonist was still capable of mediating receptor sequestration and desensitization. These results suggest that the mechanisms for regulating muscarinic receptor sensitivity could be both PKC-dependent and PKC-independent, being mediated by phorbol esters and receptor agonists respectively.

1991 ◽  
Vol 276 (2) ◽  
pp. 417-425 ◽  
Author(s):  
A Smith ◽  
S M Farooqui ◽  
W T Morgan

Haemopexin receptors from mouse hepatoma (Hepa) cells were affinity-labelled by cross-linking to haem-125I-haemopexin complexes using two homo-[disuccinimidyl suberate (DSS) and 3,3′-dithiobis(succinimidyl propionate) (DTSSP)] and one hetero-[sulphosuccinimidyl 4-(p-maleimidophenyl)butyrate (sulpho-SMPB)] bifunctional cross-linking agents. Analysis of the cross-linked products by SDS/PAGE in the absence of reducing agents revealed that 125I-haemopexin was cross-linked specifically to a protein of apparent molecular mass 85-90 kDa. Upon reduction, haemopexin remained cross-linked to a protein of 20 kDa, suggesting that the murine haemopexin receptor has a subunit structure. Two subunits were identified: alpha (p65) and beta (p20). Furthermore, because haemopexin was cross-linked by all three agents to p20, the shortest cross-linker arm being 1.1 nm (11 A), we propose that the haem-haemopexin-binding site resides on this subunit. In addition, a cysteine residue of p20 is located near the haemopexin-binding site, since haemopexin, which has no free thiol groups, is cross-linked to this subunit by the hetero-bifunctional agent sulpho-SMPB. Exposure of Hepa cells to the tumour-promoting phorbol ester 4 alpha-phorbol 12-myristate 13-acetate (PMA) causes a rapid redistribution of haemopexin receptors from the cell surface to the cell interior. Within 2-4 min of incubation with 100 nM-PMA, there was an approx. 50% decrease in cell-surface haemopexin receptors, as judged by ligand binding at 0 degrees C and affinity labelling of the receptor. This time- and dose-dependent down-regulation was fully reversible within 60-90 min after removal of PMA, and the affinity of the remaining receptors was unaltered by PMA. The specificity of PMA was demonstrated by comparison with the non-tumour-promoter 4 alpha-phorbol, which did not affect any of the parameters examined. The amine H-7, a specific inhibitor of protein kinase C, antagonised the receptor redistribution effect of PMA, suggesting that the down-regulation of haemopexin receptors on the cell surface was a consequence of protein kinase C activation. The PMA-induced decrease in surface haemopexin receptors was due to a 2-fold increase in the rate of internalization (from 0.73 min-1 to 1.32 min-1), whereas the rate of exocytosis (0.6 min-1) was unchanged. PMA treatment, like binding of the natural ligand, haem-haemopexin, results in a lower steady-state level of surface haemopexin receptors independent of receptor synthesis, and the receptors were not degraded but were recycled back to the cell surface.


1990 ◽  
Vol 269 (1) ◽  
pp. 73-78 ◽  
Author(s):  
R Kopp ◽  
P Mayer ◽  
A Pfeiffer

Activation of M3 muscarinic receptors in HT-29 cells by carbachol rapidly increases polyphosphoinositide breakdown. Pretreatment of these cells with carbachol (0.1 mM) for 5 h completely inhibits the subsequent ability of carbachol to increase [3H]inositol monophosphate ([3H]InsP) accumulation, paralleled by a total loss of muscarinic binding sites. In contrast, protein kinase C (PK-C)-mediated desensitization by incubation with phorbol esters [PMA (phorbol 12-myristate 13-acetate)], leading to a time- and dose-dependent inhibition of cholinergically stimulated InsP release (95% inhibition after 4 h with 0.1 microM-PMA), is accompanied by only a 40% decrease in muscarinic receptor binding, which suggests an additional mechanism of negative-feedback control. Neither carbachol nor PMA pretreatment had any effect on receptor affinity. Incubation with carbachol for 15 min caused a small increase of membrane-associated PK-C activity (15% increase, P less than 0.05) as compared with the potency of phorbol esters (PMA) (3-4-fold increase, P less than 0.01). Long-term incubation (4-24 h) with PMA resulted in a complete down-regulation of cytosolic and particulate PK-C activity. Stimulation of InsP release by NaF (20 mM) was not affected after a pretreatment with phorbol esters or carbachol, demonstrating an intact function of G-protein and phospholipase-C (PL-C) at the effector side. Determination of PL-C activity in a liposomal system with [3H]PtdInsP2 as substrate, showed no change in PL-C activity after carbachol (13 h) and short-term PMA (2.5 h) pretreatment, whereas long-term preincubation with phorbol esters (13 h) caused a small but significant decrease in PL-C activity (19%, P less than 0.05). Our results indicate that agonist-induced desensitization of phosphoinositide turnover occurs predominantly at the receptor level, with a rapid loss of muscarinic receptors. Exogenous activation of PK-C by phorbol esters seems to dissociate the interaction between receptor and G-protein/PL-C, without major effects on total cellular PL-C activity.


2021 ◽  
Vol 15 ◽  
Author(s):  
Suzanne M. Underhill ◽  
Susan G. Amara

The dopamine transporter (DAT) clears neurotransmitters from the extracellular space and serves as an important regulator of signal amplitude and duration at sites of dopamine release. Several different intracellular signaling pathways have been observed to modulate DAT activity through the regulation of the trafficking of the carriers to and from the cell surface. Acute activation of protein kinase C (PKC) by phorbol esters facilitates clathrin-dependent internalization of the DAT in a variety of model systems; however, the physiological stimuli and cell-surface receptor systems that activate PKC and regulate the DAT in dopamine neurons remain elusive. We report here that stimulation of M1/M5 muscarinic receptors in midbrain cultures decreases the ability of dopamine neurons to transport dopamine through DAT. Application of the cholinomimetic drug carbachol leads to a decrease in DAT activity in primary cultures while the M1/M5-specific antagonist, pirenzepine, blocks these effects. The M3 antagonist, DAU 5884, does not affect, but a positive modulator of M5, VU 0238429, enhances the loss of DAT function in response to carbachol and acetylcholine. These data implicate M1/M5 receptors on dopamine neurons in the modulation of DAT function. Bisindolylmaleimide, a PKC inhibitor, blocks the effects of carbachol stimulation on dopamine uptake, supporting a role for PKC in muscarinic receptor-mediated DAT internalization. Furthermore, as shown previously for PKC-induced internalization, downregulation of the DAT is dependent on both clathrin and dynamin. A Gq-specific inhibitor peptide also blocks the effects of carbachol on DAT in primary cultures, confirming Gq as the G-protein that couples M1/M5 receptors to PKC activation in these cells. In acute midbrain slices, biotinylation of cell-surface proteins revealed the loss of dopamine transport mediated by muscarinic receptor stimulation was, indeed, due to loss of membrane expression of the DAT in endogenous tissue. These data indicate that stimulation of cholinergic pathways can lead to modulation of dopamine through internalization of the DAT.


Sign in / Sign up

Export Citation Format

Share Document