scholarly journals Continuous synthesis of two protein-kinase-C-related proteins after down-regulation by phorbol esters.

1988 ◽  
Vol 85 (7) ◽  
pp. 2110-2114 ◽  
Author(s):  
C. Borner ◽  
U. Eppenberger ◽  
R. Wyss ◽  
D. Fabbro
1990 ◽  
Vol 267 (1) ◽  
pp. 23-29 ◽  
Author(s):  
W S Lai ◽  
T B Rogers ◽  
E E el-Fakahany

Preincubation with receptor agonists or phorbol esters desensitized muscarinic-receptor-mediated [3H]cyclic GMP responses in mouse neuroblastoma N1E-115 cells. However, desensitization mediated by phorbol esters was heterologous, whereas that effected by receptor agonist was specific towards the muscarinic receptors. In addition, there was no loss of cell surface muscarinic receptors, as measured by the binding of the hydrophilic ligand [3H]N-methylscopolamine, when cells were treated with phorbol esters, but receptor-agonist-induced desensitization was accompanied by a decrease in cell surface receptor density. We examined the role of protein kinase C (PKC) in the desensitization of muscarinic receptors by employing a kinase inhibitor and by down-regulation of PKC by long-term incubation of cells with phorbol esters. Whereas these manoeuvres had marked effects on phorbol-ester-induced desensitization of muscarinic responses, they did not block agonist-induced down-regulation and desensitization of muscarinic receptors. In addition, when phosphoinositide hydrolysis was suppressed, the muscarinic agonist was still capable of mediating receptor sequestration and desensitization. These results suggest that the mechanisms for regulating muscarinic receptor sensitivity could be both PKC-dependent and PKC-independent, being mediated by phorbol esters and receptor agonists respectively.


2000 ◽  
Vol 78 (6) ◽  
pp. 715-723 ◽  
Author(s):  
John P Williams ◽  
Margaret A McKenna ◽  
Allyn M Thames III ◽  
Jay M McDonald

Tamoxifen inhibits bone resorption by disrupting calmodulin-dependent processes. Since tamoxifen inhibits protein kinase C in other cells, we compared the effects of tamoxifen and the phorbol ester, phorbol myristate acetate, on osteoclast activity. Phorbol esters stimulate bone resorption and calmodulin levels four-fold (k0.5 = 0.1–0.3 µM). In contrast, tamoxifen inhibited osteoclast activity ~60% with an IC50 of 1.5 µM, had no apparent effect on protein kinase C activity in whole-cell lysates, and reduced protein kinase Cα recovered by immunoprecipitation 75%. Phorbol esters stimulated resorption in a time-dependent manner that was closely correlated with a similar-fold increase in calmodulin. Protein kinase Cα, β, δ, ε, and ζ were all down-regulated in response to phorbol ester treatment. Tamoxifen and trifluoperazine inhibited PMA-dependent increases in bone resorption and calmodulin by 85 ± 10%. Down-regulation of protein kinase C isoforms by phorbol esters suggests that the observed increases in bone resorption and calmodulin levels are most likely due to a mechanism independent of protein kinase C and dependent on calmodulin. In conclusion, the data suggest that protein kinase C negatively regulates calmodulin expression and support the hypothesis that the effects of both phorbol esters and tamoxifen on osteoclast activity is mediated by calmodulin.Key words: osteoclast, calmodulin, tamoxifen, osteoporosis, protein kinase C.


Sign in / Sign up

Export Citation Format

Share Document