scholarly journals Spatial separation of protein domains is not necessary for catalytic activity or substrate binding in a xylanase

1990 ◽  
Vol 269 (1) ◽  
pp. 261-264 ◽  
Author(s):  
L M A Ferreira ◽  
A J Durrant ◽  
J Hall ◽  
G P Hazlewood ◽  
H J Gilbert

Xylanase A (XYLA) from Pseudomonas fluorescens subspecies cellulosa shows sequence conservation with two endoglucanases from the same organism. The conserved sequence in XYLA, consisting of the N-terminal 234 residues, is not essential for catalytic activity. Full-length XYLA and a fusion enzyme, consisting of the N-terminal 100 residues of XYLA linked to mature alkaline phosphatase, bound tightly to crystalline cellulose (Avicel), but not to xylan. The capacity of truncated derivatives of the xylanase to bind polysaccharides was investigated. XYLA lacking the first 13 N-terminal amino acids did not bind to cellulose. However, a catalytically active XYLA derivative (XYLA′), in which residues 100-234 were deleted, bound tightly to Avicel. Substrate specificity, cellulose-binding capacity, specific activity and Km for xylan hydrolysis were evaluated for each of the xylanases. No differences in any of these parameters were detected for the two enzymes. It is concluded that XYLA contains a cellulose-binding domain consisting of the N-terminal 100 residues which is distinct from the active site. Spatial separation of the catalytic and cellulose-binding domains is not essential for the enzyme to function normally.

1990 ◽  
Vol 272 (2) ◽  
pp. 369-376 ◽  
Author(s):  
L E Kellett ◽  
D M Poole ◽  
L M Ferreira ◽  
A J Durrant ◽  
G P Hazlewood ◽  
...  

The complete nucleotide sequence of the Pseudomonas fluorescens subsp. cellulosa xynB gene, encoding an endo-beta-1,4-xylanase (xylanase B; XYLB) has been determined. The structural gene consists of an open reading frame (ORF) of 1775 bp coding for a protein of Mr 61,000. A second ORF (xynC) of 1712 bp, which starts 148 bp downstream of xynB, encodes a protein, designated xylanase C (XYLC), of Mr 59,000. XYLB hydrolyses oat spelt xylan to xylobiose and xylose, whereas XYLC releases only arabinose from the same substrate. Thus XYLB is a typical xylanase and XYLC is an arabinofuranosidase. Both enzymes bind to crystalline cellulose (Avicel), but not to xylan. The nucleotide sequences between residues 114 and 931 of xynB and xynC were identical, as were amino acid residues 39-311 of XYLB and XYLC. This conserved sequence is reiterated elsewhere in the P. fluorescens subsp. cellulosa genome. Truncated derivatives of XYLB and XYLC, in which the conserved sequence had been deleted, retained catalytic activity, but did not exhibit cellulose binding. A hybrid gene in which the 5′ end of xynC, encoding residues 1-110 of XYLC, was fused to the Escherichia coli pho A' gene (encodes mature alkaline phosphatase) directed the synthesis of a fusion protein which exhibited alkaline phosphatase activity and bound to cellulose.


2001 ◽  
Vol 67 (10) ◽  
pp. 4678-4684 ◽  
Author(s):  
Henrik Wernérus ◽  
Janne Lehtiö ◽  
Tuula Teeri ◽  
Per-Åke Nygren ◽  
Stefan Ståhl

ABSTRACT Ni2+-binding staphylococci were generated through surface display of combinatorially engineered variants of a fungal cellulose-binding domain (CBD) from Trichoderma reeseicellulase Cel7A. Novel CBD variants were generated by combinatorial protein engineering through the randomization of 11 amino acid positions, and eight potentially Ni2+-binding CBDs were selected by phage display technology. These new variants were subsequently genetically introduced into chimeric surface proteins for surface display on Staphylococcus carnosus cells. The expressed chimeric proteins were shown to be properly targeted to the cell wall of S. carnosus cells, since full-length proteins could be extracted and affinity purified. Surface accessibility for the chimeric proteins was demonstrated, and furthermore, the engineered CBDs, now devoid of cellulose-binding capacity, were shown to be functional with regard to metal binding, since the recombinant staphylococci had gained Ni2+-binding capacity. Potential environmental applications for such tailor-made metal-binding bacteria as bioadsorbents in biofilters or biosensors are discussed.


1991 ◽  
Vol 279 (3) ◽  
pp. 787-792 ◽  
Author(s):  
D M Poole ◽  
A J Durrant ◽  
G P Hazlewood ◽  
H J Gilbert

The N-terminal 160 or 267 residues of xylanase A from Pseudomonas fluorescens subsp. cellulosa, containing a non-catalytic cellulose-binding domain (CBD), were fused to the N-terminus of the catalytic domain of endoglucanase E (EGE') from Clostridium thermocellum. A further hybrid enzyme was constructed consisting of the 347 N-terminal residues of xylanase C (XYLC) from P. fluorescens subsp. cellulosa, which also constitutes a CBD, fused to the N-terminus of endoglucanase A (EGA) from Ruminococcus albus. The three hybrid enzymes bound to insoluble cellulose, and could be eluted such that cellulose-binding capacity and catalytic activity were retained. The catalytic properties of the fusion enzymes were similar to EGE' and EGA respectively. Residues 37-347 and 34-347 of XYLC were fused to the C-terminus of EGE' and the 10 amino acids encoded by the multiple cloning sequence of pMTL22p respectively. The two hybrid proteins did not bind cellulose, although residues 39-139 of XYLC were shown previously to constitute a functional CBD. The putative role of the P. fluorescens subsp. cellulosa CBD in cellulase action is discussed.


1999 ◽  
Vol 341 (3) ◽  
pp. 805-812 ◽  
Author(s):  
Carl B. BARON ◽  
Dean R. TOLAN ◽  
Kyung H. CHOI ◽  
Ronald F. COBURN

We substituted neutral amino acids for some positively charged residues (R42, K107, K146, R148 and K229) that line the active site of aldolase A in an effort to determine binding sites for inositol 1,4,5-trisphosphate. In addition, D33 (involved in carbon-carbon bond cleavage) was mutated. K229A and D33S aldolases showed almost no catalytic activity, but Ins(1,4,5)P3 binding was similar to that determined with the use of wild-type aldolase A. R42A, K107A, K146R and R148A had markedly decreased affinities for Ins(1,4,5)P3 binding, increased EC50 values for Fru(1,6)P2-evoked release of bound Ins(1,4,5)P3 and increased Ki values for Ins(1,4,5)P3-evoked inhibition of aldolase activity. K146Q (positive charge removal) had essentially no catalytic activity and could not bind Ins(1,4,5)P3. Computer-simulated docking of Ins(1,4,5)P3 in the aldolase A structure was consistent with electrostatic binding of Ins(1,4,5)P3 to K107, K146, R148, R42, R303 and backbone nitrogens, as has been reported for Fru(1,6)P2 binding. Results indicate that Ins(1,4,5)P3 binding occurs at the active site and is not dependent on having a catalytically active enzyme; they also suggest that there is competition between Ins(1,4,5)P3 and Fru(1,6)P2 for binding. Although Ins(1,4,5)P3 binding to aldolase involved electrostatic interactions, the aldolase A Ins(1,4,5)P3-binding domain did not show other similarities to pleckstrin homology domains or phosphotyrosine-binding domains known to bind Ins(1,4,5)P3 in other proteins.


1993 ◽  
Vol 294 (2) ◽  
pp. 349-355 ◽  
Author(s):  
L M Ferreira ◽  
T M Wood ◽  
G Williamson ◽  
C Faulds ◽  
G P Hazlewood ◽  
...  

The 5′ regions of genes xynB and xynC, coding for a xylanase and arabinofuranosidase respectively, are identical and are reiterated four times within the Pseudomonas fluorescens subsp. cellulosa genome. To isolate further copies of the reiterated xynB/C 5′ region, a genomic library of Ps. fluorescens subsp. cellulosa DNA was screened with a probe constructed from the conserved region of xynB. DNA from one phage which hybridized to the probe, but not to sequences upstream or downstream of the reiterated xynB/C locus, was subcloned into pMTL22p to construct pFG1. The recombinant plasmid expressed a protein in Escherichia coli, designated esterase XYLD, of M(r) 58,500 which bound to cellulose but not to xylan. XYLD hydrolysed aryl esters, released acetate groups from acetylxylan and liberated 4-hydroxy-3-methoxycinnamic acid from destarched wheat bran. The nucleotide sequence of the XYLD-encoding gene, xynD, revealed an open reading frame of 1752 bp which directed the synthesis of a protein of M(r) 60,589. The 5′ 817 bp of xynD and the amino acid sequence between residues 37 and 311 of XYLD were almost identical with the corresponding regions of xynB and xynC and their encoded proteins XYLB and XYLC. Truncated derivatives of XYLD lacking the N-terminal conserved sequence retained the capacity to hydrolyse ester linkages, but did not bind cellulose. Expression of truncated derivatives of xynD, comprising the 5′ 817 bp sequence, encoded a non-catalytic polypeptide that bound cellulose. These data indicate that XYLD has a modular structure comprising of a N-terminal cellulose-binding domain and a C-terminal catalytic domain.


1976 ◽  
Vol 155 (3) ◽  
pp. 661-667 ◽  
Author(s):  
D C Williams ◽  
J G Jones

1. The specific activity of yeast hexokinase A depends on the concentration of the protein in the solution being assayed. When a solution containing 13.5 mg of hexokinase A/ml is diluted 10-100-fold at various values of pH and temperature, there is a gradual decline in the specific activity of the enzyme until an equilibrium value is reached, which varies with the chosen experimental conditions. 2. The catalytic activity lost when hexokinase A (1 mg/ml) is incubated at 30degreesC is recovered by lowering the temperature to 25degreesC. 3. These concentration- and temperature-dependent phenomena are consistent with the existence of a monomer-dimer equilibrium in which the dimer alone is the catalytic form of the enzyme. 4. Glucose alone prevents the decline in specific activity of hexokinase A after dilution, but it does not re-activate dilute solutions solutions of the enzyme. It is concluded that glucose binds to both the dimer and the monomer and prevents both association and dissociation. 5. The progress curve describing the phosphorylation of glucose catalysed by hexokinase A does not attain a steady state. It is possible that dissociation of catalytically active dimers in a ternary complex with glucose and ATP (or glucose 6-phosphate and ADP) could explain the non-linearity of this progress curve.


1997 ◽  
Vol 324 (2) ◽  
pp. 403-411 ◽  
Author(s):  
Ana Lila GARDA ◽  
José M. FERNÁNDEZ-ABALOS ◽  
Pilar SÁNCHEZ ◽  
Alberto RUIZ-ARRIBAS ◽  
Ramón I. SANTAMARÍA

Streptomyces halstediiJM8 Cel2 is an endoglucanase of 28 kDa that is first produced as a protein of 42 kDa (p42) and is later processed at its C-terminus. Cel2 displays optimal activity towards CM-cellulose at pH 6 and 50 °C and shows no activity against crystalline cellulose or xylan. The N-terminus of p42 shares similarity with cellulases included in family 12 of the β-glycanases and the C-terminus shares similarity with bacterial cellulose-binding domains included in family II. This latter domain enables the precursor to bind so tightly to Avicel that it can only be eluted by boiling in 10% (w/v) SDS. Another open reading frame (ORF) situated 216 bp downstream from the p42 ORF encodes a protein of 40 kDa (p40) that does not have any clear hydrolytic activity against cellulosic or xylanosic compounds, but shows high affinity for Avicel (crystalline cellulose). The p40 protein is processed in old cultures to give a protein of 35 kDa that does not bind to Avicel. Translation of both ORFs is impaired in Streptomyces coelicolor bldA mutants, suggesting that a TTA codon situated at the fourth position of the first ORF is responsible for this regulation. S1 nuclease protection experiments demonstrate that both ORFs are co-transcribed.


1991 ◽  
Vol 273 (2) ◽  
pp. 289-293 ◽  
Author(s):  
A J Durrant ◽  
J Hall ◽  
G P Hazlewood ◽  
H J Gilbert

Mature endoglucanase E (EGE) from Clostridium thermocellum consists of 780 amino acid residues and has an Mr of 84,016. The N-terminal 334 amino acids comprise a functional catalytic domain. Full-length EGE bound to crystalline cellulose (Avicel) but not to xylan. Bound enzyme could be eluted with distilled water. The capacity of truncated derivatives of the enzyme to bind cellulose was investigated. EGE lacking 109 C-terminal residues (EGEd) or a derivative in which residues 367-432 of the mature form of the enzyme had been deleted (EGEb), bound to Avicel, whereas EGEa and EGEc, which lack 416 and 246 C-terminal residues respectively, did not. The specific activity of EGEa, consisting of the N-terminal 364 amino acids, was 4-fold higher than that of the full-length enzyme. The truncated derivative also exhibited lower affinity for the substrate beta-glucan than the full-length enzyme. It is concluded that EGE contains a cellulose-binding domain, located between residues 432 and 671, that is distinct from the active site. The role of this substrate-binding domain is discussed.


2018 ◽  
Vol 74 (11) ◽  
pp. 1334-1347 ◽  
Author(s):  
Bouchra El Bakkali ◽  
Guido Trautwein ◽  
Juan Alcañiz-Monge ◽  
Santiago Reinoso

The oxidation of adamantane with hydrogen peroxide catalyzed by zirconia-supported 11-molybdovanadophosphoric acid is shown to be a suitable green route for the synthesis of adamantanol and adamantanone. This work evaluates how the catalyst activity and selectivity are affected by some of its preparative parameters, such as the method for supporting the catalytically active heteropoly acid over the zirconia matrix or the pretreatments applied to the resulting materials before being used as heterogeneous catalysts. Our results indicate that the most effective catalysts able to maintain their activity after several reaction runs are those prepared by following the sol-gel route, whereas the most selective catalysts are those obtained by impregnation methods. Moreover, the calcination temperature has also been identified as a relevant parameter influencing the performance of catalysts based on supported heteropoly acids. The increasing catalytic activity observed over several consecutive reaction runs has been attributed to the formation of peroxo derivatives of polyoxometalate clusters at the surface of the catalyst and their accumulation after each reaction cycle.


Sign in / Sign up

Export Citation Format

Share Document