scholarly journals Effect of sodium chloride concentration on fluid-phase assembly and stability of the C3 convertase of the classical pathway of the complement system

1990 ◽  
Vol 271 (3) ◽  
pp. 749-754 ◽  
Author(s):  
S Maeda ◽  
S Nagasawa

The assembly of the classical-pathway C3 convertase from C4 and I2-treated C2 by the action of C1s is an Mg2(+)-dependent reaction. The Mg2+ concentration necessary for the assembly of C3 convertase in the fluid phase was found to be dependent on NaCl concentration. In the absence of NaCl more than 5 mM-MgCl2 was found to be required, whereas 0.5 mM-MgCl2 was adequate for the assembly of C3 convertase in the presence of 150 mM-NaCl. The C3 convertase assembled in a low-ionic-strength buffer was extremely labile compared with that assembled in buffer of physiological ionic strength, and the stability of C3 convertase was improved with the increase in NaCl concentration. It was found that the stabilizing effect of NaCl on C3 convertase was due to inhibition of the dissociating activity of C2b, which was formed during the assembly of C3 convertase. In addition to the dissociation-accelerating effect, C2b inhibited the assembly of C3 convertase in low-ionic-strength buffer, and this effect also was diminished with increase in NaCl concentration. An increase in NaCl concentration to more than 200 mM resulted in a decrease in the assembly of C3 convertase. This effect was not due to the lability of the assembled C3 convertase but due rather to the inhibition of C2 cleavage by C1s. Purified C3 convertase itself is stable in dilute medium or high-ionic-strength medium such as 500 mM-NaCl, suggesting that the interactions between C4b and C2a are hydrophobic. In these respects C2b seemed to be functionally similar to C4bp, but C2b failed to act as a cofactor for the Factor I-catalysed C4b cleavage.

1989 ◽  
Vol 264 (2) ◽  
pp. 581-588 ◽  
Author(s):  
T Seya ◽  
J P Atkinson

Membrane cofactor protein (MCP or gp45-70) of the complement system is a cofactor for factor I-mediated cleavage of fluid-phase C3b and C3b-like C3, which opens the thioester bond. In the present study the activity of MCP was further characterized. Unexpectedly, in the absence of factor I, MCP stabilized the alternative- and, to a lesser extent, the classical-pathway cell-bound C3 convertases and thereby enhanced C3b deposition. Soluble MCP, if added exogenously, hardly functioned as cofactor for the cleavage of erythrocyte-bound C3b to iC3b; i.e. its activity, compared with the cofactor activity of factor H, was inefficient, since less than 10% of the bound C3b was MCP-sensitive. Further, exogenously added soluble MCP was also a weak cofactor for the cleavage of C3b bound to zymosan. Likewise, factor I, in the presence of cells bearing MCP, cleaved fluid-phase C3b inefficiently. These results imply that MCP has very little extrinsic cofactor activity for factor I. In contrast, exogenously added MCP and factor I mediated efficient cleavage of erythrocyte-bound C3b if the concentration of Nonidet P40 was sufficient to solubilize the cells. Interestingly, soluble MCP and factor I degraded C3b attached to certain solubilized acceptor membrane molecules more readily than others. The cleavage reaction of fluid-phase and cell-bound C3b by soluble MCP and factor I produced iC3b, but no C3c and C3dg. These and prior data indicate that soluble MCP has potent cofactor activity for fluid-phase C3b or C3b bound to solubilized molecules, but acts inefficiently towards C3b on other cells. This functional profile is unique for a C3b/C4b binding protein and, taken together with its wide tissue distribution, suggests an important role for MCP in the regulation of the complement system.


1970 ◽  
Vol 48 (8) ◽  
pp. 944-946 ◽  
Author(s):  
E. Griffiths

The stability, in solutions of low ionic strength, of aminoacyl-tRNA synthetases from the extremely halophilic bacterium Halobacterium cutirubrum was studied as a preliminary to their fractionation. The enzymes differed considerably in their sensitivity to such solutions. Conditions were found where reactivation from the salt-free and inactive state could be achieved. Removal of both K+ and Mg2+ together generally resulted in better stability than the removal of K+ alone. A low temperature (4°) was also important for stability in buffers of low ionic strength. In some cases the L-amino acid substrates afforded protection against inactivation in the salt-free state. Gel filtration in low ionic strength medium was found to work well as a fractionation procedure; a partial purification of phenylalanyl-tRNA synthetase was effected in this way. The use of other conventional protein fractionation procedures is now possible.


1978 ◽  
Vol 18 (1) ◽  
pp. 16-23 ◽  
Author(s):  
M. J. McDowall ◽  
P. J. Lincoln ◽  
B. E. Dodd

The incorporation of a low ionic strength solution (LISS) in the micro-elution technique used for the detection of blood group antigens in stains markedly improves the test's sensitivity. This is because LISS increases the amount of antibody taken up by the antigen in the stain which results in a greater yield of antibody recovered from the slain by elution. LISS also enhances the activity of the eluted antibody if it is introduced as a suspension medium for the red cells used to detect the antibody. The introduction of suitably diluted AB serum as diluent when testing the eluates is an additional advantage. The improvement in the sensitivity of the micro-elution technique is great enough in some instances to allow the detection of an antigen in a stain which is undetectable in the absence of LISS. Moreover some doubtful positive reactions are enhanced sufficiently for the presence of an antigen to be definitely established.


1980 ◽  
Vol 189 (1) ◽  
pp. 173-181 ◽  
Author(s):  
M A Kerr

The assembly of the classical pathway C3 convertase in the fluid phase has been studied. The enzyme is assembled from C2 and C4 on cleavage of these proteins by C1s. Once assembled, the enzyme activity decays rapidly. Kinetic evidence has been obtained that this decay is even more rapid than previously suggested (kdecay is 2.0 min-1 at 37 degrees C). As a result, optimal C3 convertase activity is only observed with high C1s levels, which result in rapid rates of cleavage of C2 and increased rates of formation of the C3 convertase. Using high concentrations of C1s at lower temperatures (22 degrees C) in the presence of excess substrate we have demonstrated kinetically that the enzyme comprises an equimolar complex of C4b and cleaved C2. We have obtained direct evidence from gel-filtration experiments for the role of C2a as the catalytic subunit of the enzyme. C2b appears to mediate the interaction between C4 (or C4b) and C2 at pH 8.5 and at low ionic strength where the interactions can easily be detected. It may therefore be important in the assembly of the enzyme, though it is not involved in the catalytic activity. The decay of the C3 convertase reflects the release of C2a from the C4b x (C2b) x C2a complex, and the stabilizing effect of iodine on the C3 convertase is therefore apparently one of stabilizing the C4b-C2z interaction, which is otherwise weak. C1s is not a part of the C3 convertase enzyme.


2015 ◽  
Vol 81 (22) ◽  
pp. 7680-7686 ◽  
Author(s):  
Idrissa Samandoulgou ◽  
Riadh Hammami ◽  
Rocio Morales Rayas ◽  
Ismail Fliss ◽  
Julie Jean

ABSTRACTLoss of ordered molecular structure in proteins is known to increase their adhesion to surfaces. The aim of this work was to study the stability of norovirus secondary and tertiary structures and its implications for viral adhesion to fresh foods and agrifood surfaces. The pH, ionic strength, and temperature conditions studied correspond to those prevalent in the principal vehicles of viral transmission (vomit and feces) and in the food processing and handling environment (pasteurization and refrigeration). The structures of virus-like particles representing GI.1, GII.4, and feline calicivirus (FCV) were studied using circular dichroism and intrinsic UV fluorescence. The particles were remarkably stable under most of the conditions. However, heating to 65°C caused losses of β-strand structure, notably in GI.1 and FCV, while at 75°C the α-helix content of GII.4 and FCV decreased and tertiary structures unfolded in all three cases. Combining temperature with pH or ionic strength caused variable losses of structure depending on the particle type. Regardless of pH, heating to pasteurization temperatures or higher would be required to increase GII.4 and FCV adhesion, while either low or high temperatures would favor GI.1 adhesion. Regardless of temperature, increased ionic strength would increase GII.4 adhesion but would decrease GI.1 adhesion. FCV adsorption would be greater at refrigeration, pasteurization, or high temperature combined with a low salt concentration or at a higher NaCl concentration regardless of temperature. Norovirus adhesion mediated by hydrophobic interaction may depend on hydrophobic residues normally exposed on the capsid surface at pH 3, pH 8, physiological ionic strength, and low temperature, while at pasteurization temperatures it may rely more on buried hydrophobic residues exposed upon structural rearrangement.


Sign in / Sign up

Export Citation Format

Share Document