scholarly journals Some reactions of carbon monoxide and oxygen with carbodi-imide-modified cytochrome c

1991 ◽  
Vol 276 (1) ◽  
pp. 121-124
Author(s):  
A J Mathews ◽  
T Brittain

The reactivity of carbodi-imide-modified tuna and horse heart cytochromes c with the ferrous ion ligands CO and O2 has been studied. Both modified cytochromes bind one molecule of CO. Stopped-flow and flash-photolysis experiments indicate the presence of three kinetic processes in the reaction of the cytochromes with CO. The second-order rate constants associated with all three kinetic process are pH-independent being 2.8 x 10(5) M-1.s-1, 3.8 x 10(4) M-1.s-1 and 4 x 10(3) M-1.s-1 under all conditions studied. The concentration-dependence of the contributions made by each of the processes to the overall absorbance change indicates that the fast and slow kinetic phases are associated with two forms of the cytochromes which are in equilibrium, whereas the intermediate phase arises from a separate cytochrome species. The quantum yield for the photodissociation of CO from the ferrous cytochromes is unusually low. Both modified cytochromes are capable of binding and reducing O2. In the presence of excess reductant, the modified cytochromes can catalytically reduce large molar excesses of O2. In the absence of excess reducing agent, the oxy complex initially formed undergoes a pH-dependent intramolecular electron-transfer process with half-life approx. 10 min. EDC [1-ethyl-3-(3-dimethylaminopropyl)carbodi-imide]-promoted internal cross-linking is proposed to account for differences between the EDC-modified proteins and carboxymethylated cytochrome c.

Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6976
Author(s):  
Petro Khoroshyy ◽  
Katalin Tenger ◽  
Rita V. Chertkova ◽  
Olga V. Bocharova ◽  
Mikhail P. Kirpichnikov ◽  
...  

Electron transfer within and between proteins is a fundamental biological phenomenon, in which efficiency depends on several physical parameters. We have engineered a number of horse heart cytochrome c single-point mutants with cysteine substitutions at various positions of the protein surface. To these cysteines, as well as to several native lysine side chains, the photoinduced redox label 8-thiouredopyrene-1,3,6-trisulfonate (TUPS) was covalently attached. The long-lived, low potential triplet excited state of TUPS, generated with high quantum efficiency, serves as an electron donor to the oxidized heme c. The rates of the forward (from the label to the heme) and the reverse (from the reduced heme back to the oxidized label) electron transfer reactions were obtained from multichannel and single wavelength flash photolysis absorption kinetic experiments. The electronic coupling term and the reorganization energy for electron transfer in this system were estimated from temperature-dependent experiments and compared with calculated parameters using the crystal and the solution NMR structure of the protein. These results together with the observation of multiexponential kinetics strongly support earlier conclusions that the flexible arm connecting TUPS to the protein allows several shortcut routes for the electron involving through space jumps between the label and the protein surface.


1979 ◽  
Vol 254 (23) ◽  
pp. 11973-11981 ◽  
Author(s):  
J.K. Dethmers ◽  
S. Ferguson-Miller ◽  
E. Margoliash
Keyword(s):  

1977 ◽  
Vol 252 (2) ◽  
pp. 574-582 ◽  
Author(s):  
D L Brautigan ◽  
B A Feinberg ◽  
B M Hoffman ◽  
E Margoliash ◽  
J Preisach ◽  
...  

Biochemistry ◽  
1983 ◽  
Vol 22 (23) ◽  
pp. 5270-5279 ◽  
Author(s):  
Anjan Bhattacharyya ◽  
Gordon Tollin ◽  
Michael Davis ◽  
Dale E. Edmondson

1973 ◽  
Vol 131 (3) ◽  
pp. 485-498 ◽  
Author(s):  
R. P. Ambler ◽  
Margaret Wynn

The amino acid sequences of the cytochromes c-551 from three species of Pseudomonas have been determined. Each resembles the protein from Pseudomonas strain P6009 (now known to be Pseudomonas aeruginosa, not Pseudomonas fluorescens) in containing 82 amino acids in a single peptide chain, with a haem group covalently attached to cysteine residues 12 and 15. In all four sequences 43 residues are identical. Although by bacteriological criteria the organisms are closely related, the differences between pairs of sequences range from 22% to 39%. These values should be compared with the differences in the sequence of mitochondrial cytochrome c between mammals and amphibians (about 18%) or between mammals and insects (about 33%). Detailed evidence for the amino acid sequences of the proteins has been deposited as Supplementary Publication SUP 50015 at the National Lending Library for Science and Technology, Boston Spa, Yorks. LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1973), 131, 5.


1982 ◽  
Vol 60 (6) ◽  
pp. 613-623 ◽  
Author(s):  
P. Nicholls ◽  
J.-K. Kim

Anomalies both kinetic and equilibrium in nature are described for the inhibition of cytochrome c oxidase activity by sulphide in the isolated enzyme and in submitochondrial particles. These anomalies are related to the involvement of more than 1 mol of sulphide in the blockage of one cytochrome aa3 centre. Sulphide reduces resting cytochrome a3, a reaction that results in oxygen uptake and the loss of a sulphide molecule. Sulphide can also reduce cytochromes c and a; in the former case, a part of the one-equivalent oxidation product, presumed to be the SH∙ radical, reacts with oxygen. Such oxygen uptake is also seen under aerobic conditions when ferricyanide reacts with sulphide. Three phases are identified in the inhibitory interaction of sulphide with the cytochrome c oxidase enzyme itself: an initial rapid reaction involving sulphide oxidation, oxygen uptake, and conversion of cytochrome aa3 into the low-spin "oxyferri" form; a subsequent step in which sulphide reduces cytochrome a; and the final inhibitory step in which a third molecule of sulphide binds the a3 iron centre in the cytochrome [Formula: see text] (oxy) species to give cytochrome [Formula: see text]. The initial events parallel some of the events in the interaction of the cytochrome c – cytochrome aa3 system with monothiols; the final inhibitory event resembles that with cyanide.


1969 ◽  
Vol 114 (4) ◽  
pp. 793-799 ◽  
Author(s):  
O. T. G. Jones

Illumination of chromatophore preparations from Rhodopseudomonas spheroides causes the oxidation of a cytochrome c and a slight oxidation of a cytochrome b with a maximum at 560nm. When illuminated in the presence of antimycin A the oxidation of cytochrome c was more pronounced and cytochrome b560 was reduced; the dark oxidation of cytochrome b560 was biphasic in the presence of succinate, but not in the presence of NADH, a less effective reductant. Split-beam spectroscopy showed that, in addition to the reduction of cytochrome b560, another pigment with maxima at 565 and 537nm. was reduced and was more rapidly oxidized in the dark than cytochrome b560. This pigment, tentatively identified as cytochrome b565, was also detected in spectra at 77°k, after brief illumination at room temperature; the maxima at 77°k were at 562 and 536nm. In the absence of antimycin A, light caused a transient reduction of cytochrome b565 and an oxidation of cytochrome b560. Dark oxidation of b565 was rapid, even in the presence of antimycin A and succinate. Difference spectra, at 77°k, of ascorbate-reduced minus succinate-reduced chromatophores or of anaerobic succinate-reduced minus aerobic succinate-reduced chromatophores suggested that two cytochromes c were present, with maxima at 547 and 549nm. When chromatophores frozen at 77°k were illuminated both these cytochromes c were oxidized, indicating a close association with the photochemical reaction centre. A scheme involving two reaction centres is proposed to explain these results.


Sign in / Sign up

Export Citation Format

Share Document