scholarly journals Immunological discrimination of β-tubulin isoforms in developing mouse brain. Post-translational modification of non-class-III β-tubulins

1992 ◽  
Vol 288 (3) ◽  
pp. 919-924 ◽  
Author(s):  
I Linhartová ◽  
P Dráber ◽  
E Dráberová ◽  
V Viklický

Individual beta-tubulin isoforms in developing mouse brain were characterized using immunoblotting, after preceding high-resolution isoelectric focusing, with monoclonal antibodies against different structural regions of beta-tubulin. Some of the antibodies reacted with a limited number of tubulin isoforms in all stages of brain development and in HeLa cells. The epitope for the TU-14 antibody was located in the isotype-defining domain and was present on the beta-tubulin isotypes of classes I, II and IV, but absent on the neuron-specific class-III isotype. The data suggest that non-class-III beta-tubulins in mouse brain are substrates for developmentally regulated post-translational modifications and that beta-tubulins of non-neuronal cells are also post-translationally modified.

1995 ◽  
Vol 108 (9) ◽  
pp. 3013-3028 ◽  
Author(s):  
N. Levilliers ◽  
A. Fleury ◽  
A.M. Hill

Polyclonal (PAT) and monoclonal (AXO 49) antibodies against Paramecium axonemal tubulin were used as probes to reveal tubulin heterogeneity. The location, the nature and the subcellular distribution of the epitopes recognized by these antibodies were, respectively, determined by means of: (i) immunoblotting on peptide maps of Paramecium, sea urchin and quail axonemal tubulins; (ii) immunoblotting on ciliate tubulin fusion peptides generated in E. coli to discriminate antibodies directed against sequential epitopes (reactive) from post-translational ones (non reactive); and (iii) immunofluorescence on Paramecium cells, using throughout an array of antibodies directed against tubulin sequences and post-translational modifications as references. AXO 49 monoclonal antibody and PAT serum were both shown to recognize epitopes located near the carboxyl-terminal end of both subunits of Paramecium axonemal tubulin, whereas the latter recognized additional epitopes in alpha-tubulin; AXO 49 and a fraction of the PAT serum proved to be unreactive over fusion proteins; both PAT and AXO 49 labelled a restricted population of very stable microtubules in Paramecium, consisting of axonemal and cortical ones, and their reactivity was sequentially detected following microtubule assembly; finally, both antibodies stained two upward spread bands in Paramecium axonemal tubulin separated by SDS-PAGE, indicating the recognition of various alpha- and beta-tubulin isoforms displaying different apparent molecular masses. These data, taken as a whole, definitely establish that PAT and AXO 49 recognize a post-translational modification occurring in axonemal microtubules of protozoa as of metazoa. This modification appears to be distinct from the previously known ones, and all the presently available evidence indicates that it corresponds to the very recently discovered polyglycylation of Paramecium axonemal alpha- and beta-tubulin.


1989 ◽  
Vol 109 (2) ◽  
pp. 663-673 ◽  
Author(s):  
H C Joshi ◽  
D W Cleveland

beta-Tubulin is encoded in vertebrate genomes by a family of six to seven functional genes that produce six different polypeptide isotypes. We now document that although rat PC-12 cells express five of these isotypes, only two (classes II and III) accumulate significantly as a consequence of nerve growth factor-stimulated neurite outgrowth. In contrast to previous efforts that have failed to detect in vivo distinctions among different beta-tubulin isotypes, we demonstrate using immunoblotting with isotype-specific antibodies that three beta-tubulin polypeptides (classes I, II, and IV) are used preferentially for assembly of neurite microtubules (with approximately 70% of types I and II assembled but only approximately 50% of type III in polymer). Immunofluorescence localization shows that an additional isotype (V) is partially excluded from neurites. Distinctions in in vivo localization of the neuron-specific, class III isotype have also been directly observed using immunofluorescence and immunogold electron microscopy. The sum of these efforts documents that some in vivo functional differences between tubulin isotypes do exist.


1991 ◽  
Vol 88 (11) ◽  
pp. 4685-4689 ◽  
Author(s):  
J. E. Alexander ◽  
D. F. Hunt ◽  
M. K. Lee ◽  
J. Shabanowitz ◽  
H. Michel ◽  
...  

2013 ◽  
Vol 13 (1) ◽  
pp. 260-267 ◽  
Author(s):  
Alistair V. G. Edwards ◽  
Gregory J. Edwards ◽  
Veit Schwämmle ◽  
Henrik Saxtorph ◽  
Martin R. Larsen

2012 ◽  
Vol 11 (11) ◽  
pp. 1191-1202 ◽  
Author(s):  
Giuseppe Palmisano ◽  
Benjamin L. Parker ◽  
Kasper Engholm-Keller ◽  
Sara Eun Lendal ◽  
Katarzyna Kulej ◽  
...  

We describe a method that combines an optimized titanium dioxide protocol and hydrophilic interaction liquid chromatography to simultaneously enrich, identify and quantify phosphopeptides and formerly N-linked sialylated glycopeptides to monitor changes associated with cell signaling during mouse brain development. We initially applied the method to enriched membrane fractions from HeLa cells, which allowed the identification of 4468 unique phosphopeptides and 1809 formerly N-linked sialylated glycopeptides. We subsequently combined the method with isobaric tagging for relative quantification to compare changes in phosphopeptide and formerly N-linked sialylated glycopeptide abundance in the developing mouse brain. A total of 7682 unique phosphopeptide sequences and 3246 unique formerly sialylated glycopeptides were identified. Moreover 669 phosphopeptides and 300 formerly N-sialylated glycopeptides differentially regulated during mouse brain development were detected. This strategy allowed us to reveal extensive changes in post-translational modifications from postnatal mice from day 0 until maturity at day 80. The results of this study confirm the role of sialylation in organ development and provide the first extensive global view of dynamic changes between N-linked sialylation and phosphorylation.


1993 ◽  
Vol 4 (6) ◽  
pp. 615-626 ◽  
Author(s):  
S Audebert ◽  
E Desbruyères ◽  
C Gruszczynski ◽  
A Koulakoff ◽  
F Gros ◽  
...  

The relationship between microtubule dynamics and polyglutamylation of tubulin was investigated in young differentiating mouse brain neurons. Selective posttranslational labeling with [3H]glutamate and immunoblotting with a specific monoclonal antibody (GT335) enabled us to analyze polyglutamylation of both alpha and beta subunits. Nocodazole markedly inhibited incorporation of [3H]glutamate into alpha- and beta-tubulin, whereas taxol had no effect for alpha-tubulin and a stimulating effect for beta-tubulin. These results strongly suggest that microtubule polymers are the preferred substrate for polyglutamylation. Chase experiments revealed the existence of a reversal reaction that, in the case of alpha-tubulin, was not affected by microtubule drugs, suggesting that deglutamylation of this subunit can occur on both polymers and soluble tubulin. Evidence was obtained that deglutamylation of alpha-tubulin operates following two distinct rates depending on the length of the polyglutamyl chain, the distal units (4th-6th) being removed rapidly whereas the proximal ones (1st-3rd) appearing much more resistant to deglutamylation. Partition of glutamylated alpha-tubulin isoforms was also correlated with the length of the polyglutamyl chain. Forms bearing four to six units were recovered specifically in the polymeric fraction, whereas those bearing one to three units were distributed evenly between polymeric and soluble fractions. It thus appears that the slow rate component of the deglutamylation reaction offers to neurons the possibility to maintain a basal level of glutamylated alpha-tubulin in the soluble pool independently of microtubule dynamics. Finally, some differences observed in the glutamylation of alpha- and beta-tubulin suggest that distinct enzymes are involved.


Biochemistry ◽  
1995 ◽  
Vol 34 (25) ◽  
pp. 8050-8060 ◽  
Author(s):  
Sharon Lobert ◽  
Anthony Frankfurter ◽  
John J. Correia

2020 ◽  
Author(s):  
Miguel A. Gama Sosa ◽  
Rita De Gasperi ◽  
Gissel M. Perez ◽  
Patrick R. Hof ◽  
Gregory A. Elder

2020 ◽  
Vol 64 (1) ◽  
pp. 97-110
Author(s):  
Christian Sibbersen ◽  
Mogens Johannsen

Abstract In living systems, nucleophilic amino acid residues are prone to non-enzymatic post-translational modification by electrophiles. α-Dicarbonyl compounds are a special type of electrophiles that can react irreversibly with lysine, arginine, and cysteine residues via complex mechanisms to form post-translational modifications known as advanced glycation end-products (AGEs). Glyoxal, methylglyoxal, and 3-deoxyglucosone are the major endogenous dicarbonyls, with methylglyoxal being the most well-studied. There are several routes that lead to the formation of dicarbonyl compounds, most originating from glucose and glucose metabolism, such as the non-enzymatic decomposition of glycolytic intermediates and fructosyl amines. Although dicarbonyls are removed continuously mainly via the glyoxalase system, several conditions lead to an increase in dicarbonyl concentration and thereby AGE formation. AGEs have been implicated in diabetes and aging-related diseases, and for this reason the elucidation of their structure as well as protein targets is of great interest. Though the dicarbonyls and reactive protein side chains are of relatively simple nature, the structures of the adducts as well as their mechanism of formation are not that trivial. Furthermore, detection of sites of modification can be demanding and current best practices rely on either direct mass spectrometry or various methods of enrichment based on antibodies or click chemistry followed by mass spectrometry. Future research into the structure of these adducts and protein targets of dicarbonyl compounds may improve the understanding of how the mechanisms of diabetes and aging-related physiological damage occur.


Sign in / Sign up

Export Citation Format

Share Document