scholarly journals G-protein from Medicago sativa: functional association to photoreceptors

1993 ◽  
Vol 291 (2) ◽  
pp. 383-388 ◽  
Author(s):  
J P Muschietti ◽  
H E Martinetto ◽  
O A Coso ◽  
M D Farber ◽  
H N Torres ◽  
...  

G-protein subunits were characterized from Medicago sativa (alfalfa) seedlings. Crude membranes and GTP-Sepharose-purified fractions were electrophoresed on SDS/polyacrylamide gels and analysed by Western blotting with 9193 (anti-alpha common) and AS/7 (anti-alpha t, anti-alpha i1 and anti-alpha i2) polyclonal antibodies. These procedures led to the identification of a specific polypeptide band of about 43 kDa. Another polypeptide reacting with the SW/1 (anti-beta) antibody, of about 37 kDa, was also detected. The 43 kDa polypeptide bound specifically [alpha-32P]GTP by a photoaffinity reaction and was ADP-ribosylated by activated cholera toxin, but not by pertussis toxin. Irradiation of etiolated Medicago sativa protoplast preparations at 660 nm for 1 min produced a maximal increase in the guanosine 5′-[gamma-thio]triphosphate (GTP[35S])-binding rate. After this period of irradiation, the binding rate tended to decrease. The effect of a red-light (660 nm) pulse on the binding rate was reversed when it was immediately followed by a period of far-red (> 730 nm) illumination. These results may suggest that activation of GTP[S]-binding rate was a consequence of conversion of phytochrome Pr into the Ptr form.

2001 ◽  
Vol 280 (5) ◽  
pp. H2069-H2075 ◽  
Author(s):  
L. P. Thompson ◽  
C. P. Weiner

We hypothesized that pregnancy modulates receptor-mediated responses of the uterine artery (UA) by altering G protein activation or coupling. Relaxation and contraction to NaF (0.5–11.5 mM), acetylcholine (10−9–10−5 M), and bradykinin (10−12–3 × 10−5 M) were measured in isolated UA of pregnant and nonpregnant guinea pigs. Responses were measured in the presence and absence of either cholera toxin (2 μg/ml) or pertussis toxin (Gαs and Gαiinhibitors, respectively). NaF relaxation was endothelium dependent and nitro-l-arginine sensitive (a nitric oxide synthase inhibitor). Relaxation to NaF, acetylcholine, and bradykinin were potentiated by pregnancy. Cholera but not pertussis toxin increased relaxation to acetylcholine and bradykinin in UA from nonpregnant animals, had no effect in UA from pregnant animals, and abolished the pregnancy-induced differences in acetylcholine relaxation. Cholera toxin potentiated the bradykinin-induced contraction of UA of both pregnant and nonpregnant animals, whereas pertussis toxin inhibited contraction of UA from pregnant animals only. Therefore, pregnancy may enhance agonist-stimulated endothelium-dependent relaxation and bradykinin-induced contraction of UA by inhibiting GTPase activity or enhancing Gαs but not Gαi activation in pregnant animals. Thus the diverse effects of pregnancy on UA responsiveness may result from hormonal modulation of G proteins coupled to their specific receptors.


1992 ◽  
Vol 287 (2) ◽  
pp. 443-446 ◽  
Author(s):  
O A Coso ◽  
A Díaz Añel ◽  
H Martinetto ◽  
J P Muschietti ◽  
M Kazanietz ◽  
...  

A guanosine 5′-[gamma-[35S]thio]triphosphate-binding activity was detergent-extracted from Trypanosoma cruzi membranes. This binding activity was co-eluted from gel-filtration columns with a factor which, in a heterologous reconstitution system, blocks glucagon stimulation of adenylate cyclase activity in liver membranes. ADP-ribosylation of these membranes by pertussis toxin eliminated this blocking capacity. Incubation of T. cruzi membranes with activated pertussis toxin and [adenylate-32P]NAD+ led to the incorporation of radioactivity into a labelled product with an apparent M(r) of approx. 43,000. Crude membranes were electrophoresed on SDS/polyacrylamide gels and analysed, by Western blotting, with GA/1 anti-alpha common, AS/7 anti-alpha t, anti-alpha i1 and anti-alpha i2 polyclonal antibodies. These procedures led to the identification of a specific polypeptide band of about 43 kDa. Another polypeptide reacting with the SW/1 anti-beta antibody, of about 30 kDa, was also detected in the membrane fraction.


2003 ◽  
Vol 99 (2) ◽  
pp. 392-399 ◽  
Author(s):  
Igor M. Nikonorov ◽  
Thomas J. J. Blanck ◽  
Esperanza Recio-Pinto

Background G-protein activation mediates inhibition of N-type Ca2+ currents. Volatile anesthetics affect G-protein pathways at various levels, and activation of G-proteins has been shown to increase the volatile anesthetic potency for inhibiting the electrical-induced contraction in ileum. The authors investigated whether isoflurane inhibition of N-type Ba2+ currents was mediated by G-protein activation. Methods N-type Ba2+ currents were measured in the human neuronal SH-SY5Y cell line by using the whole cell voltage-clamp method. Results Isoflurane was found to have two effects on N-type Ba2+ currents. First, isoflurane reduced the magnitude of N-type Ba2+ currents to a similar extent (IC50 approximately 0.28 mm) in the absence and presence of GDPbetaS (a nonhydrolyzable GDP analog). Interestingly, GTPgammaS (a nonhydrolyzable GTP analog and G-protein activator) in a dose-dependent manner reduced the isoflurane block; 120 microm GTPgammaS completely eliminated the block of 0.3 mm isoflurane and reduced the apparent isoflurane potency by approximately 2.4 times (IC50 approximately 0.68 mm). Pretreatment with pertussis toxin or cholera toxin did not eliminate the GTPgammaS-induced protection against the isoflurane block. Furthermore, isoflurane reduced the magnitude of voltage-dependent G-protein-mediated inhibition of N-type Ba2+ currents, and this effect was eliminated by pretreatment with pertussis toxin or cholera toxin. Conclusions It was found that activation of G-proteins in a neuronal environment dramatically reduced the isoflurane potency for inhibiting N-type Ba2+ currents and, in turn, isoflurane affected the G-protein regulation of N-type Ba2+ currents.


1996 ◽  
Vol 320 (2) ◽  
pp. 459-466 ◽  
Author(s):  
GRANT Karen R. ◽  
Margaret M. HARNETT ◽  
Graeme MILLIGAN ◽  
William HARNETT

Heterotrimeric G-proteins have been found in eukaryotic cells, from yeast to humans, but have received little attention, to date, with respect to parasitic organisms. We now present the first report of the characterization of heterotrimeric G-proteins expressed in a filarial nematode, Acanthocheilonema viteae. Using a combination of (i) affinity labelling with [α-32P]GTP; (ii) ADP-ribosylation with cholera toxin and pertussis toxin; (iii) Western blotting with a panel of anti-G-protein antibodies; and (iv) reverse transcriptase-PCR with degenerate G-protein oligonucleotide primers followed by hybridization analysis using oligonucleotides specific for individual G-protein subunits, we demonstrate that adult A. viteae expresses homologues of the β1-and/or β2-like subunits and α-subunits of the Gs, Gi, Gq and G12 subfamilies found in mammals. The role which these G-proteins may play in the biology of the organism is discussed.


1991 ◽  
Vol 280 (2) ◽  
pp. 515-519 ◽  
Author(s):  
J A Sokoloski ◽  
A C Sartorelli ◽  
R E Handschumacher ◽  
C W Lee

The effects of pertussis toxin on the Na(+)-dependent transport of uridine were studied in HL-60 leukaemia cells induced to differentiate along the granulocytic or monocytic pathways by dimethyl sulphoxide (DMSO) or phorbol 12-myristate 13-acetate (PMA) respectively. Pertussis toxin at 50 ng/ml completely inhibited the activation of Na(+)-dependent uridine transport and consequently prevented the formation of intracellular pools of free uridine which occurs in HL-60 cells induced to differentiate by DMSO. The inhibition of Na(+)-dependent uridine transport by pertussis toxin in cells exposed to DMSO was associated with a 14-fold decrease in affinity, with no change in Vmax. Pertussis toxin, however, had no effect on Na(+)-dependent uridine transport in PMA-induced HL-60 cells. Furthermore, 500 ng of cholera toxin/ml had no effect on the Na(+)-dependent uptake of uridine in DMSO-treated HL-60 cells. These results suggest that the activation of the Na(+)-dependent transport of uridine in HL-60 cells induced to differentiate along the granulocytic pathway by DMSO is coupled to a pertussis-toxin-sensitive guanine-nucleotide binding protein (G-protein).


2003 ◽  
Vol 99 (5) ◽  
pp. 1093-1101 ◽  
Author(s):  
Claudia Benkwitz ◽  
James C. Garrison ◽  
Joel Linden ◽  
Marcel E. Durieux ◽  
Markus W. Hollmann

Background Local anesthetics inhibit several G protein-coupled receptors by interaction with the Galphaq protein subunit. It is not known whether this effect on G protein function can be extrapolated to other classes of G proteins. The authors investigated interactions of lidocaine with the human adenosine 1 receptor (hA1R)-coupled signaling pathway. Activated A1Rs couple to adenylate cyclase via the pertussis toxin sensitive Galphai protein, thereby decreasing cyclic adenosine monophosphate formation. A1Rs are widely expressed and abundant in the spinal cord, brain, and heart. Interactions of LAs with the hA1R-coupled transduction cascade therefore might produce a broad range of clinically relevant effects. Methods The function of hA1Rs stably expressed in Chinese hamster ovary cells was determined with assays of cyclic adenosine monophosphate, receptor binding, and guanosine diphosphate/guanosine triphosphate gamma35S exchange by using reconstituted defined G protein subunits. Involvement of phosphodiesterase and Galphai was characterized by using the phosphodiesterase inhibitor rolipram and pertussis toxin, respectively. Results Lidocaine (10-9-10-1 M) had no significant effects on agonist or antagonist binding to the hA1R or on receptor-G protein interactions. However, cyclic adenosine monophosphate levels were reduced significantly to 50% by the LAs, even in the absence of an A1R agonist or presence of an A1R antagonist. This effect was unaffected by rolipram (10 mum), but abolished completely by pretreatment with pertussis toxin, which inactivates the Galphai protein. Therefore, the main target site for LAs in this pathway is located upstream from adenylate cyclase. Conclusions Lidocaine potentiates Galphai-coupled A1R signaling by reducing cyclic adenosine monophosphate production. The study suggests an interaction site for LAs in a Galphai-coupled signaling pathway, with the Galphai protein representing the prime candidate. Taken together with previous results showing inhibitory LA interactions on the Galphaq protein subunit, the data in the current study support the hypothesis that specific G protein subunits represent alternative sites of LA action.


1995 ◽  
Vol 269 (2) ◽  
pp. R308-R317 ◽  
Author(s):  
S. L. Shuman ◽  
M. L. Capece ◽  
H. A. Baghdoyan ◽  
R. Lydic

Microinjecting cholinomimetics into the medial pontine reticular formation (mPRF) of conscious cats causes a rapid eye movement (REM) sleep-like state and state-dependent respiratory depression. Muscarinic receptors within the mPRF have been shown to mediate this state-dependent respiratory depression, but the specific signal transduction mechanisms remain poorly understood. This study tested the hypothesis that the cholinergically induced REM sleep-like state and state-dependent respiratory depression are mediated by guanine nucleotide binding proteins (G proteins). Cholera toxin, pertussis toxin, 5'-guanylylimidodiphosphate, and forskolin were microinjected alone and in combination with carbachol into the mPRF of intact unanesthetized cats. All of the G protein-altering compounds significantly reduced the ability of carbachol to produce the REM sleep-like state. Pertussis toxin caused the greatest decrease in the percent of time spent in the carbachol-evoked REM sleep-like state, showing for the first time mediation by a pertussis toxin-sensitive (Gi- or G(o)-like) G protein. Cholera toxin blocked the carbachol-induced respiratory depression, indicating mediation by a Gs-like G protein. Forskolin significantly decreased carbachol-evoked REM sleep. These data provide the first demonstration that adenylyl cyclase within the mPRF contributes to the carbachol induction of REM sleep and respiratory depression.


1995 ◽  
Vol 268 (3) ◽  
pp. F461-F467 ◽  
Author(s):  
O. S. Ruiz ◽  
Y. Y. Qiu ◽  
L. J. Wang ◽  
J. A. Arruda

We examined the regulation of the renal cortical basolateral Na-HCO3 cotransporter by G proteins. Na-HCO3 cotransporter activity was measured in highly purified rabbit renal cortical basolateral membranes (BLMV) as the difference in 22Na uptake in presence of HCO3- and gluconate. HCO(3-)-dependent 22Na uptake was significantly inhibited by 10 microM guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S), a G protein activator. In contrast, addition of 50 microM guanosine 5'-O-(2-thiodiphosphate) (GDP beta S), an inhibitor of G protein, prevented the inhibition of the Na-HCO3 cotransporter activity by GTP gamma S. AlF4-, another G protein activator, also inhibited the activity of the Na-HCO3 cotransporter. This inhibitory effect of G protein on the Na-HCO3 cotransporter activity was not prevented by dideoxyadenosine, an adenylate cyclase inhibitor, or by the protein kinase A inhibitor, suggesting a direct effect of G protein on the cotransporter. To identify the G proteins that mediate the regulation of the Na-HCO3 cotransporter, purified BLMV were ADP ribosylated in presence of cholera toxin or pertussis toxin. Autoradiograms of BLMV incubated with [32P]NAD showed that cholera and pertussis toxins caused ADP ribosylation of 42- and 41-kDa G proteins, respectively. To determine whether the ADP ribosylation by cholera or pertussis toxin was associated with alterations of the Na-HCO3 cotransporter activity, we measured HCO(3-)-dependent 22Na uptake in BLMV treated with 20 micrograms/ml cholera toxin or with 100 ng/ml pertussis toxin. Na-HCO3 cotransporter activity was significantly decreased by both cholera and pertussis toxins.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document