scholarly journals Adrenergic control of induction of type II iodothyronine 5′-deiodinase activity in cultured mouse brown adipocytes

1993 ◽  
Vol 292 (1) ◽  
pp. 303-308 ◽  
Author(s):  
S Pavelka ◽  
J Hermanská ◽  
M Baudysová ◽  
J Houstĕk

Iodothyronine 5′-deiodinase (5′D) of mouse brown adipocytes differentiated in cell culture was characterized in detail with respect to the adrenergic control of its biosynthesis. The stimulation of 5′D required mRNA and protein synthesis and was dependent on the stage of differentiation of the cells. The maximum induction was observed around confluence (7-day-old cells), in pre- and post-confluent cells the 5′D activity was significantly less induced. The transient responsiveness of brown fat-cells to the stimulatory effect of adrenergic agents was reflected also in the time course of the induction of 5′D by different concentrations of agonists. The maximum response occurred regularly after an 8 h incubation and implicated a rather fast turnover of the induced enzyme. On the basis of the inhibitory effects of cycloheximide and actinomycin D, the half-life of the induced 5′D and its mRNA were estimated to be 1.5 and 3.3 h respectively. The noradrenaline-induced 5′D activity was shown to be that of the type II enzyme, insensitive to propylthiouracil (PTU). The estimated values of its apparent Km for thyroxine, Km for the co-substrate dithiothreitol, and Vmax. in the presence of 1 mM PTU were 2 nM, 2.6 mM, and 0.1 pmol of I-/h per mg of protein respectively. The 5′D activity was effectively induced by forskolin and dibutyryl cyclic AMP, as well as by isoprenaline, noradrenaline and CGP-12177, but not by phenylephrine, cirazoline or oxymetazoline. This indicates that, contrary to previous observations in vivo, stimulation of 5′D in cultured brown fat-cells involves elevated cyclic AMP levels and is mediated predominantly via beta-receptors, particularly via the so-called beta 3-adrenoceptors.

1986 ◽  
Vol 236 (3) ◽  
pp. 757-764 ◽  
Author(s):  
R J Schimmel ◽  
D Dzierzanowski ◽  
M E Elliott ◽  
T W Honeyman

The present experiments were undertaken to investigate the role of the phosphoinositides phosphatidylinositol 4-phosphate (PtdIns-4-P) and phosphatidylinositol 4,5-biphosphate (PtdIns-4,5-P2) in the alpha 1-adrenergic stimulation of respiration in isolated hamster brown adipocytes. Exposure of isolated brown adipocytes to the alpha-adrenergic-receptor agonist phenylephrine provoked a breakdown of 30-50% of the PtdIns-4-P and PtdIns-4,5-P2 after prelabelling of the cells with [32P]Pi. Coincident with the breakdown of phosphoinositides was an accumulation of labelled phosphatidic acid, which continued for the duration of the cell incubation. The time course of phosphoinositide breakdown was defined more precisely by pulse-chase experiments. Under these conditions, phenylephrine caused radioactivity in phosphatidylinositol, PtdIns-4-P and PtdIns-4,5-P2 to fall by more than 50% within 30 s and to remain at the depressed value for the duration of the incubation (10 min). This phospholipid response to alpha-adrenergic stimulation was blocked by exposure of the cells to phorbol 12-myristate 13-acetate (PMA); likewise phenylephrine stimulation of respiration was prevented by PMA. beta-Adrenergic stimulation of respiration and inhibition of respiration by 2-chloroadenosine and insulin were, however, unaffected by treatment with PMA. On the assumption that PMA is acting in these cells as an activator of protein kinase C, these results suggest the selective interruption of alpha-adrenergic actions in brown adipocytes by activated protein kinase C. These findings suggest that breakdown of phosphoinositides is an early event in alpha-adrenergic stimulation of brown adipocytes which may be important for the subsequent stimulation of respiration. The results from the pulse-chase studies also suggest, however, that phenylephrine-stimulated breakdown of inositol phospholipids is a short-lived event which does not appear to persist for the entire period of exposure to the alpha 1-adrenergic ligand.


1985 ◽  
Vol 249 (5) ◽  
pp. C456-C463 ◽  
Author(s):  
R. J. Schimmel ◽  
L. McCarthy ◽  
D. Dzierzanowski

This communication reports the effects of the exotoxin of Bordetella pertussis (pertussis toxin) on hamster brown fat cells. Pertussis toxin significantly increased the lipolytic and respiratory responses to isoproterenol but did not increase the basal rates of either of these processes. In contrast, the stimulation of respiration by the alpha-adrenergic agent phenylephrine was not altered by pertussis toxin. The inhibitory effects of adenosine on stimulated lipolysis, respiration, and adenylate cyclase activity were completely abolished by pertussis toxin, as was the ability of methylxanthines or adenosine deaminase to potentiate isoproterenol stimulation of respiration or lipolysis. These effects of pertussis toxin were associated with an ADP ribosylation of a single membrane protein having a molecular weight of approximately 41. These data demonstrate that pertussis toxin can prevent the inhibitory action of adenosine on brown fat cells and suggest that the effects of the nucleoside on these cells results from inhibition of adenylate cyclase. We further suggest that the enhanced responses to isoproterenol in pertussis-treated adipocytes results from a blockade of the action of endogenous adenosine. In addition to blocking adenosine action, pertussis toxin also abolished the antilipolytic effect of insulin. However, because the antilipolytic effect of insulin was prevented by adenosine deaminase and 3-isobutyl-1-methylxanthine and restored by 2-chloroadenosine, we conclude that insulin action on these cells is dependent on adenosine. Thus pertussis toxin blockade of insulin action appears to be secondary to blockade of adenosine action.


1982 ◽  
Vol 99 (1) ◽  
pp. 349-362
Author(s):  
M. CHAMBERLIN ◽  
J. E. PHILLIPS

1. Recta of desert locusts were short-circuited and depleted of endogenous substrates by exposing them to saline containing cyclic AMP but no metabolites. Individual substrates were then added to substrate-depleted recta and the change in short-circuit current (Isc) monitored. 2. Proline or glucose (50 mM) caused by far the largest increase in Isc of all substrates tested. Stimulation of the Isc by proline was not dependent upon external sodium, but did require external chloride. 3. Physiological levels of proline also caused a large increase in Isc, while physiological levels of glucose produced a much smaller stimulation. Over 90% of the proline-dependent Isc stimulation can be produced by adding 15 mM proline solely to the lumen side of the tissue. 4. These results are discussed with regard to rectal oxidative metabolism and availability of metabolic substrates in vivo. High levels of proline in Malpighian tubule fluid are probably the major substrate source for rectal Cl−transport. Note:


1996 ◽  
Vol 76 (2) ◽  
pp. 995-1004 ◽  
Author(s):  
A. Rusch ◽  
R. A. Eatock

1. Membrane currents of hair cells in acutely excised or cultured mouse utricles were recorded with the whole cell voltage-clamp method at temperatures between 23 and 36 degrees C. 2. Type I and II hair cells both had delayed rectifier conductances that activated positive to -55 mV. 3. Type I, but not type II, hair cells had an additional delayed rectifier conductance (gK,L) with an activation range that was unusually negative and variable. At 23-25 degrees C, V(1/2) values ranged from -88 to -62 mV in 57 cells. 4. gK,L was very large. At 23-25 degrees C, the average maximum chord conductance was 75 +/- 65 nS (mean +/- SD, n = 57; measured at -54 mV), or approximately 21 nS/pF of cell capacitance. 5. gK,L was highly selective for K+ over Na+ (permeability ratio PNa+/PK+:0.006), but unlike other delayed rectifiers, gK,L was significantly permeable to Cs+ (PCs+/PK+:0.31). gK,L was independent of extracellular Ca2+. 6. At -64 mV, Ba2+ and 4-aminopyridine blocked gK,L with apparent dissociation constants of 2.0 mM and 43 microM, respectively. Extracellular Cs+ (5 mM) blocked gK,L by 50% at -124 mV. Apamin (100 nM) and dendrotoxin (10 nM) has no effect. 7. The kinetic data of gK,L are consistent with a sequential gating model with at least two closed states and one open state. The slow activation kinetics (principal time constants at 23-25 degrees C:600-200 ms) had a thermal Q10 of 2.1. Inactivation (Q10:2.7) was partial at all temperatures. Deactivation followed a double-exponential time course and had a Q10 of 2.0. 8. At 23-25 degrees C, gK,L was appreciably activated at the mean resting potential of type I hair cells (-77 +/- 3.1 mV, n = 62), so that input conductances were often more than an order of magnitude larger than those of type II cells. If these conditions hold in vivo, type I cells would produce unusually small receptor potentials. Warming the cells to 36 degrees C produced parallel shifts in gK,L's activation range (0.8 +/- 0.3 mV/degrees C, n = 8), and in the resting potential (0.6 +/- 0.3 mV/degrees C, n = 4). Thus the high input conductances were not an artifact of unphysiological temperatures but remained high near body temperature. It remains possible that in vivo gK,L's activation range is less negative and input conductances are lower; the large variance in the voltage range of activation suggests that it may be subject to modulation.


1974 ◽  
Vol 142 (2) ◽  
pp. 287-294 ◽  
Author(s):  
P. J. Lowry ◽  
Colin McMartin

Isolated adrenal cells were perfused in a small column by using Bio-Gel polyacrylamide beads as an inert supporting matrix, and the time-course of the response to various stimuli was observed by measuring fluorogenic 11-hydroxycorticosteroids in the effluent. A small but significant response was observed 1 min after stimulation with physiological concentrations of ACTH (adrenocorticotrophin), but the response did not start to build up rapidly for 3–4min and eventually reached a plateau after 9–10min. A similar pattern of events was observed for the decay of the steroid output on removal of ACTH. ACTH analogues, including one with a long duration of action in vivo, were found to produce responses with similar kinetics. However, cyclic AMP caused a more rapid increase in steroidogenesis and its effects were more short-lived after withdrawal. If, as present evidence suggests, cyclic AMP is produced rapidly after ACTH stimulation the delayed build-up of the steroidogenic response to ACTH would indicate that cyclic AMP may not be the intracellular mediator. When inhibitors were applied during ACTH stimulation, aminoglutethimide, which blocks mitochondrial conversion of cholesterol into pregnenolone (3β-hydroxypregn-5-en-20-one), caused a rapid fall in steroid output (1 min), whereas cycloheximide took longer to achieve its full effect. Nevertheless, the response had fallen by 50% in 2 min, indicating a much shorter half-life than that previously reported for the labile protein implicated in steroidogenesis. In addition the rapid response to cyclic AMP makes it unlikely that steroid production is induced as a result of initiation of protein synthesis. This suggests that the labile protein plays an obligatory but permissive role in the development of the response. Column perfusion has proved to be a simple technique which can readily yield accurate data on responses of cells to stimulants and inhibitors.


1979 ◽  
Vol 237 (5) ◽  
pp. C200-C204 ◽  
Author(s):  
D. J. Stewart ◽  
J. Sax ◽  
R. Funk ◽  
A. K. Sen

Stimulation of salt galnd secretion in domestic ducks in vivo increased the cyclic GMP concentration of the tissue, but had no effect on cyclic AMP levels. Methacholine, which is known to stimulate sodium transport by the glands both in vivo and in vitro, stimulated ouabain-sensitive respiration in salt gland slices. Cyclic GMP stimulated ouabain-sensitive respiration to the same extent as methacholine. Guanylate cyclase stimulators, hydroxylamine and sodium azide, also stimulated ouabain-sensitive respiration. The stimulation of ouabain-sensitive respiration by methacholine was blocked either by atropine or by removal of calcium from the incubation medium. The stimulation of ouabain-sensitive respiration by cyclic GMP still occurred in the absence of calcium. The above observations seem to indicate that cyclic GMP acts as a tertiary link in the process of stimulus-secretion coupling in the tissue.


1990 ◽  
Vol 69 (4) ◽  
pp. 1408-1412 ◽  
Author(s):  
N. Kogo ◽  
H. Arita

Using the micro pressure ejection technique, we examined responses of medullary neurons with nonphasic discharges (164 units) to direct application of acidified mock cerebrospinal fluid (CSF, pH 6.85-7.05) in decerebrated spontaneously breathing cats. We found 16 H(+)-sensitive cells; they were excited promptly on application of approximately 500 pl of acidified mock CSF in the vicinity of the neuron under investigation, whereas they were unaffected by microejection of the control mock CSF (pH 7.25-7.60). Of the 16 H(+)-sensitive cells, 10 units were further found to be excited by transcapillary stimulation of the central chemoreceptors by using a method of intravertebral arterial injection of CO2-saturated saline. The discharges increased in a similar time course to that of ventilatory augmentation. Distributions of these 10 specific H(+)-sensitive cells were found in the vicinity of nucleus tractus solitarii as well as deep in the ventrolateral medulla. The present results suggest a possibility that pH-dependent central chemoreceptors, if any, would be located in two distinct medullary regions described in this study.


1979 ◽  
Vol 237 (3) ◽  
pp. F218-F225 ◽  
Author(s):  
M. J. Bia ◽  
S. Dewitt ◽  
J. N. Forrest

The effects of in vivo physiologic doses of vasopressin and 1-deamino-8-D-arginine vasopressin (DDAVP) on the cyclic AMP content of plasma, urine, and renal papillary tissue were determined in the ADH-deficient Brattleboro rat. During clearance studies, plasma cyclic AMP concentrations and both total and nephrogenous urinary cyclic AMP excretion in vasopressin- and DDAVP-treated rats were similar to the values in time-matched controls. In contrast, in situ renal papillary cyclic AMP content was higher (P less than 0.001) in both vasopressin- (35.7 +/- 3.6 pmol/mg protein) and DDAVP- (29.7 +/- 2.2 pmol/mg protein) treated rats compared to controls (15.1 +/- 1.3 pmol/mg protein). Endogenous stimulation of vasopressin by dehydration in normal rats increased both papillary cyclic AMP content (27.1 +/- 2.7 pmol/mg protein) and urine osmolality, whereas no change in papillary cyclic AMP was observed following dehydration in Brattleboro rats (13.6 +/- 0.8 pmol/mg protein) despite an increase in urine osmolality. The results demonstrate that changes in cyclic AMP following in vivo vasopressin are best demonstrated by measurement of in situ cyclic AMP content of the renal papilla, whereas total urinary cyclic AMP and nephrogenous cyclic AMP are not useful indices of tubular sensitivity to this hormone.


1998 ◽  
Vol 274 (4) ◽  
pp. F753-F761 ◽  
Author(s):  
Hiroshi Miyakawa ◽  
Seung Kyoon Woo ◽  
Ching-Pu Chen ◽  
Stephen C. Dahl ◽  
Joseph S. Handler ◽  
...  

We have previously identified a tonicity-responsive enhancer (TonE) in the promoter region of the canine BGT1 gene. TonE mediates hypertonicity-induced stimulation of transcription. Here, we characterize TonE and TonE binding proteins (TonEBPs) to provide a biochemical basis for cloning of the TonEBPs. Mutational analysis applied to both hypertonicity-induced stimulation of transcription and TonEBP binding reveals that TonE is 11 base pairs in length, with the consensus sequence of (C/T)GGAAnnn(C/T)n(C/T). Activity of the TonEBPs increases in response to hypertonicity with a time course similar to that of transcription of the BGT1 gene. Studies with inhibitors indicate that translation, but not transcription, is required for activation of the TonEBPs. Phosphorylation is required for the stimulation of transcription but not for activation of DNA binding by the TonEBPs. In vivo methylation by dimethyl sulfate reveals that the TonE site of the BGT1 gene is protected with a time course like that of activity of the TonEBPs and activation of transcription. Ultraviolet cross-linking indicates that the TonEBPs share a DNA binding subunit of 200 kDa.


1996 ◽  
Vol 271 (1) ◽  
pp. E15-E23 ◽  
Author(s):  
A. Hernandez ◽  
M. J. Obregon

Iodothyronine type II 5'-deiodinase (5'D-II) activities were studied in cultures of rat brown adipocytes. In the presence of serum, the adrenergically stimulated 5'D-II activities were very low. In the absence of serum, adenosine 3',5'-cyclic monophosphate (cAMP) analogues stimulated 5'D-II activity. Thyroxine (T4) inhibited these increases. Norepinephrine slightly increased 5'D-II activity in hypothyroid conditions, but 3,5,3'-triiodothyronine (T3) strongly potentiated the adrenergic stimulation of 5'D-II (20-fold). T3 amplification of the adrenergic stimulation was via beta-adrenergic receptors, specifically mimicked by beta3-agonists, but it was not observed using cAMP analogues. The stimulatory effect of T3 predominated over the inhibitory action of T4, increased with exposure to T3, and required de novo protein synthesis. The half-life of 5'D-II was 30 min, suggesting that stabilization of 5'D-II did not occur. The effect was only observed in differentiated adipocytes. Retinoic acid has similar although smaller effects than T3. In conclusion, the presence of T3 is required and strongly potentiates the noradrenergic stimulation of 5'D-II activity in rat brown adipocytes.


Sign in / Sign up

Export Citation Format

Share Document