scholarly journals Dermatan sulphate proteoglycans of human articular cartilage. The properties of dermatan sulphate proteoglycans I and II

1989 ◽  
Vol 262 (3) ◽  
pp. 823-827 ◽  
Author(s):  
P J Roughley ◽  
R J White

Dermatan sulphate proteoglycans were purified from juvenile human articular cartilage, with a yield of about 2 mg/g wet wt. of cartilage. Both dermatan sulphate proteoglycan I (DS-PGI) and dermatan sulphate proteoglycan II (DS-PGII) were identified and the former was present in greater abundance. The two proteoglycans could not be resolved by agarose/polyacrylamide-gel electrophoresis, but could be resolved by SDS/polyacrylamide-gel electrophoresis, which indicated average Mr values of 200,000 and 98,000 for DS-PGI and DS-PGII respectively. After digestion with chondroitin ABC lyase the Mr values of the core proteins were 44,000 for DS-PGI and 43,000 and 47,000 for DS-PGII, with the smaller core protein being predominant in DS-PGII. Sequence analysis of the N-terminal 20 amino acid residues reveals the presence of a single site for the potential substitution of dermatan sulphate at residue 4 of DS-PGII and two such sites at residues 5 and 10 for DS-PGI.

1986 ◽  
Vol 233 (3) ◽  
pp. 809-818 ◽  
Author(s):  
Y Sommarin ◽  
D Heinegård

The characteristics of cell-associated proteoglycans were studied and compared with those from the medium in suspension cultures of calf articular-cartilage chondrocytes. By including hyaluronic acid or proteoglycan in the medium during [35S]sulphate labelling the proportion of cell-surface-associated proteoglycans could be decreased from 34% to about 15% of all incorporated label. A pulse-chase experiment indicated that this decrease was probably due to blocking of the reassociation with the cells of proteoglycans exported to the medium. Three peaks of [35S]sulphate-labelled proteoglycans from cell extracts and two from the medium were isolated by gel chromatography on Sephacryl S-500. These were characterized by agarose/polyacrylamide-gel electrophoresis, by SDS/polyacrylamide-gel electrophoresis of core proteins, by glycosaminoglycan composition and chain size as well as by distribution of glycosaminoglycans in proteolytic fragments. The results showed that associated with the cells were (a) large proteoglycans, typical for cartilage, apparently bound to hyaluronic acid at the cell surface, (b) an intermediate-size proteoglycan with chondroitin sulphate side chains (this proteoglycan, which had a large core protein, was only found associated with the cells and is apparently not related to the large proteoglycans), (c) a small proteoglycan with dermatan sulphate side chains with a low degree of epimerization, and (d) a somewhat smaller proteoglycan containing heparan sulphate side chains. The medium contained a large aggregating proteoglycan of similar nature to the large cell-associated proteoglycan and small proteoglycans with dermatan sulphate side chains with a higher degree of epimerization than those of the cells, i.e. containing some 20% iduronic acid.


1988 ◽  
Vol 256 (1) ◽  
pp. 35-40 ◽  
Author(s):  
H Larjava ◽  
J Heino ◽  
T Krusius ◽  
E Vuorio ◽  
M Tammi

Dermatan sulphate proteoglycans (DSPGs) synthesized in the presence of 35SO4 were characterized in culture media of fibroblast lines obtained from skin, synovium, and gingiva. The molecular mass of DSPG varied from 95-130 kDa as estimated by SDS/polyacrylamide-gel electrophoresis. Gingival fibroblasts constantly produced larger DSPGs than skin fibroblasts. This was due to the larger dermatan sulphate (DS) chains, which also showed tissue-related heterogeneity in the distribution of 4- and 6-sulphated disaccharide units. The N-glycosylated cores (44 and 47 kDa) obtained following chondroitinase ABC treatment were of identical size in all tissues. The cores from the different tissues were also of the same size (38 kDa) when addition of the N-linked oligosaccharides was inhibited by tunicamycin or when they were removed by N-glycanase treatment. No evidence for low-molecular-mass sulphated oligosaccharides was found. All tissues contained two mRNA species (1.6 and 1.9 kb) for the DSPG core protein. These data suggest that the pattern of transferase activities involved in the construction of DS chains differs from one tissue to another. This variation may modulate the functions of DSPG in the extracellular matrix.


1989 ◽  
Vol 263 (1) ◽  
pp. 137-142 ◽  
Author(s):  
H Hausser ◽  
W Hoppe ◽  
U Rauch ◽  
H Kresse

Endosomal preparations from human osteosarcoma cells and from fibroblasts contain 51,000- and 26,000-Mr proteins which bind a small dermatan sulphate proteoglycan after SDS/polyacrylamide-gel electrophoresis and Western blotting. Binding can be inhibited by unlabelled proteoglycan core protein. The proteins co-precipitate with a proteoglycan core protein-antibody complex. Scatchard analysis of immobilized endosomal proteins yielded a KD of about 37 nM for the proteoglycan. In intact cells proteins of the same size can be found. They are sensitive to trypsinization. A 51,000-Mr protein is the predominant membrane protein with strong binding to immobilized dermatan sulphate proteoglycan. There are additional proteoglycan-binding proteins with Mr values of around 30,000 and 14,000 which are insensitive to trypsin treatment. In contrast with the 51,000- and 26,000-Mr proteins, they resist deoxycholate/Triton X-100 extraction several days after subcultivation.


1987 ◽  
Vol 1 (2) ◽  
pp. 276-281 ◽  
Author(s):  
J.-H. Yeh ◽  
T. Takagi ◽  
S. Sasaki

Two peptide fractions of bovine amelogenin having a highly aggregative property to form polymers were purified by chromatography, SDS-polyacrylamide gel electrophoresis, and HPLC. Amino acid sequences of purified peptides were determined by automated Edman degradation. One peptide was found to be composed of 63 amino acid residues having a molecular weight of 7105, and the other of 86 residues having that of 9683. The sequence of the smaller peptide was identical to the C-terminal 63 residues of the amelogenin molecule of 170 residues previously reported, but the larger contained eight residues which are absent in the amelogenin sequence. There is a possibility that the latter peptide might be synthesized independently from mRNA spliced at different positions.


1985 ◽  
Vol 232 (1) ◽  
pp. 161-168 ◽  
Author(s):  
S Johansson ◽  
K Hedman ◽  
L Kjellén ◽  
J Christner ◽  
A Vaheri ◽  
...  

Subconfluent cultures of human embryonic skin fibroblasts were labelled with [35S]sulphate for 3 days, after which cell-free extracellular matrix was isolated. A chondroitin sulphate proteoglycan (CSPG) and a heparan sulphate proteoglycan (HSPG) were purified from the matrix. Chromatography on Sepharose CL-2B gave peak Kav. values of 0.35 and 0.38 respectively for the CSPG and the HSPG. The polysaccharide chains released from the two PGs were of similar size (Kav. 0.50 on Sepharose CL-4B). Approx. 50% of the CSPG showed affinity for hyaluronic acid (HA). However, it differed immunologically from the HA-aggregating CSPG of human articular cartilage, and had a larger core protein (apparent molecular mass 290 kDa) than had the cartilage PG. Neither metabolically [35S]sulphate-labelled PGs, isolated from the medium of fibroblast cultures, nor chemically 3H-labelled polysaccharides (HA, CS, HS and heparin) were incorporated into the extracellular matrix when added to unlabelled cell cultures. These results indicate that the matrix PGs are not derived from the PGs present in the medium and that an interation between polysaccharide chains and matrix components is not sufficient for incorporation of PGs into the matrix. Incubation of cell-free 35S-labelled matrix with unlabelled polysaccharides did not lead to the release of any 35S-labelled material, supporting this conclusion. Furthermore, so-called ‘link proteins’ were not present in the fibroblast cultures, indicating that the CSPGs were anchored in the matrix in a manner different from the link-stabilized association of CSPG with HA in chondrocyte matrix. The identification of a proteinase, secreted by fibroblasts in culture, that after activation with heparin has the ability to release 35S-labelled PGs from the matrix may also indicate that the core proteins are important for the association of the PGs to the matrix.


1993 ◽  
Vol 293 (1) ◽  
pp. 165-172 ◽  
Author(s):  
V Vilím ◽  
A J Fosang

Approx. 10% of the total proteoglycan content of normal young human articular cartilage was extracted under associative conditions with Dulbecco's PBS. Proteoglycans isolated from the extract by Q-Sepharose chromatography were separated by gel chromatography and characterized by gradient gel SDS/PAGE and immunoblotting. Three species of small proteoglycans, two main populations of aggrecan and a population of its smaller fragments were identified. The major populations of aggrecan contained chondroitin sulphate chains, all or part of the N-terminal G1 and G2 domains and, therefore, intact keratan sulphate domains. The larger population was estimated by gradient SDS/PAGE to have a molecular mass of approx. 600 kDa or greater. The second population had an apparent molecular mass of approx. 300-600 kDa. Core proteins derived from these populations of proteoglycans separated on SDS/PAGE into several clusters of bands in the range from 120 to approx. 360 kDa. The extract further contained smaller fragments which lacked chondroitin sulphate but reacted with antibodies against keratan sulphate, and against epitopes present in the G2 domain of aggrecan. The presence of the G2 domain in a broad range of populations of decreasing size indicated extensive cleavage of the aggrecan core protein within its chondroitin sulphate domain. These findings suggest that fragmentation of aggrecan probably occurs in vivo in normal articular cartilage of young individuals. Associative extracts also contained decorin, biglycan and fibromodulin. These were resolved from aggrecan by gel chromatography and identified by immunodetection.


1989 ◽  
Vol 261 (2) ◽  
pp. 501-508 ◽  
Author(s):  
L I Melching ◽  
P J Roughley

Non-aggregating dermatan sulphate proteoglycans can be extracted from both fetal and adult human articular cartilage. The dermatan sulphate proteoglycans appear to be smaller in the adult, this presumably being due to shorter glycosaminoglycan chains, and these chains contain a greater proportion of their uronic acid residues as iduronate. Both the adult and fetal dermatan sulphate proteoglycans contain a greater amount of 4-sulphation than 6-sulphation of the N-acetylgalactosamine residues, in contrast with the aggregating proteoglycans, which always show more 6-sulphation on their chondroitin sulphate chains. In the fetus the major dermatan sulphate proteoglycan to be synthesized is DS-PGI, though DS-PGII is synthesized in reasonable amounts. In the adult, however, DS-PGI synthesis is barely detectable relative to DS-PGII, which is still synthesized in substantial amounts. Purification of the dermatan sulphate proteoglycans from adult cartilage is hampered by the presence of degradation products derived from the large aggregating proteoglycans, which possess similar charge, size and density properties, but which can be distinguished by their ability to interact with hyaluronic acid.


1981 ◽  
Vol 198 (2) ◽  
pp. 331-338 ◽  
Author(s):  
Ian A. King ◽  
Anne Tabiowo

1. When pig ear skin slices were cultured for 18h in the presence of 1mug of tunicamycin/ml the incorporation of d-[3H]glucosamine into the epidermis, solubilized with 8m-urea/5% (w/v) sodium dodecyl sulphate, was inhibited by 45–55%. This degree of inhibition was not increased by using up to 5mug of tunicamycin/ml or by treating the skin slices with tunicamycin for up to 8 days. The incorporation of (U-14C)-labelled l-amino acids under these conditions was not affected by tunicamycin. Polyacrylamide-gel electrophoresis indicated that the labelling of the major glycosaminoglycan peak with d-[3H]glucosamine was unaffected, whereas that of the faster migrating glycoprotein components was considerably decreased in the presence of tunicamycin. 2. Subcellular fractionation indicated that tunicamycin specifically inhibited the incorporation of d-[3H]glucosamine but not of (U-14C)-labelled l-amino acids into particulate (mainly plasma-membrane) glycoproteins by about 70%. The labelling of soluble glycoproteins was hardly affected. Polyacrylamide-gel electrophoresis of the plasma-membrane fraction showed decreased d-[3H]glucosamine incorporation into all glycoprotein components, indicating that the plasma-membrane glycoproteins contained mainly N-asparagine-linked oligosaccharides. 3. Cellulose acetate electrophoresis of both cellular and extracellular glycosaminoglycans showed that tunicamycin had no significant effect on the synthesis of the major component, hyaluronic acid. However, the incorporation of both d-[3H]glucosamine and 35SO42− into sulphated glycosaminoglycans was inhibited by about 50%. This inhibition was partially overcome, at least in the cellular fraction, by 2mm-p-nitrophenyl β-d-xyloside indicating that tunicamycin-treated epidermis retained the ability to synthesize sulphated glycosaminoglycan chains. Tunicamycin may affect the synthesis and/or degradation of proteoglycan core proteins or the xylosyltransferase. 4. Electron-microscopic examination of epidermis treated with tunicamycin for up to 4 days revealed no significant changes in cell-surface morphology or in epidermal-cell adhesion. Either N-asparagine-linked carbohydrates play little role in epidermal-cell adhesion or more probably there is little turnover of these components in epidermal adhesive structures such as desmosomes and hemidesmosomes during organ culture.


1974 ◽  
Vol 143 (2) ◽  
pp. 453-460 ◽  
Author(s):  
Alan V. Emes ◽  
Michael J. Gallimore ◽  
Alan W. Hodson ◽  
Albert L. Latner

A method is presented for the preparation of human heart lactate dehydrogenase (l-lactate–NAD+ oxidoreductase; EC 1.1.1.27) isoenzyme 1; this involves the use of polyacrylamide-gel electrophoresis as a preparative step. The yield was about 10% with a final specific activity of 220 units/mg of protein, one unit being defined as the amount of enzyme catalysing the oxidation of 1μmol of NADH/min at 25°C, in the presence of 0.33mm-pyruvate. The crystalline preparation contained less than 2% of the other isoenzymes, was homogeneous in the ultracentrifuge and showed only a trace of protein contamination on polyacrylamide-gel electrophoresis. Some properties of the crystalline isoenzyme are reported; E1%1cm=13.2 at 280nm, s020,w=7.43S, pI=4.6, and the apparent Km for pyruvate=1.02×10−4m. The human isoenzyme and the isoenzyme from pig heart differ with respect to amino acid composition, electrophoretic mobility and solubility. It is possible that these differences do not involve the active site, or sites, but are due to changes in amino acid residues elsewhere in the molecule. The importance of purified human LDH-1 isoenzyme with regard to enzyme radioimmunoassay is emphasized.


1988 ◽  
Vol 254 (3) ◽  
pp. 757-764 ◽  
Author(s):  
L de O Sampaio ◽  
M T Bayliss ◽  
T E Hardingham ◽  
H Muir

Low molecular mass proteoglycans (PG) were isolated from human articular cartilage and from pig laryngeal cartilage, which contained protein cores of similar size (Mr 40-44 kDa). However, the PG from human articular cartilage contained dermatan sulphate (DS) chains (50% chondroitinase AC resistant), whereas chains from pig laryngeal PG were longer and contained only chondroitin sulphate (CS). Disaccharide analysis after chondroitinase ABC digestion showed that the human DS-PG contained more 6-sulphated residues (34%) than the pig CS-PG (6%) and both contained fewer 6-sulphated residues than the corresponding high Mr aggregating CS-PGs from these tissues (86% and 20% from human and pig respectively). Cross-reaction of both proteoglycans with antibodies to bovine bone and skin DS-PG-II and human fibroblasts DS-PG suggested that the isolated proteoglycans were the humans DS-PG-II and pigs CS-PG-II homologues of the cloned and sequenced bovine proteoglycan. Polyclonal antibodies raised against the pig CS-PG-II were shown to cross-react with human DS-PG-II. SDS/polyacrylamide-gel analysis and immunoblotting of pig and human cartilage extracts showed that some free core protein was present in the tissues in addition to the intact proteoglycan. The antibodies were used in a competitive radioimmunoassay to determine the content of this low Mr proteoglycan in human cartilage extracts. Analysis of samples from 5-80 year-old humans showed highest content (approximately 4 mg/g wet wt.) in those from 15-25 year-olds and lower content (approximately 1 mg/g wet wt.) in older tissue (greater than 55 years). These changes in content may be related to the deposition and maintenance of the collagen fibre network with which this class of small proteoglycan has been shown to interact.


Sign in / Sign up

Export Citation Format

Share Document