scholarly journals Involvement of a phosphotyrosine protein phosphatase in the suppression of platelet-derived growth factor receptor autophosphorylation in ras-transformed cells

1993 ◽  
Vol 293 (1) ◽  
pp. 215-221 ◽  
Author(s):  
L Tomáska ◽  
R J Resnick

The nature of the suppression of platelet-derived growth factor (PDGF) receptor autophosphorylation in ras-transformed NIH 3T3 fibroblasts was investigated. The PDGF receptor from ras-transformed cells that had been purified by wheatgerm-lectin affinity chromatography displayed normal PDGF-induced autophosphorylation, indicating that the receptor is not irreversibly modified. Various phosphotyrosine-protein-phosphatase inhibitors did not reverse the inhibition of PDGF-receptor kinase in crude membrane preparations from ras-transformed cells. However, treatment of intact ras-transformed cells both with 2 mM sodium orthovanadate and with 20 microM phenylarsine oxide restored PDGF-receptor tyrosine-kinase activity to a level similar to that observed in normal cells. Direct measurement of the phosphatase activities in crude cellular fractions revealed a 2.5-fold higher membrane-associated phosphotyrosine-protein-phosphatase activity in ras-transformed cells, whereas phosphoserine-protein-phosphatase activity remained unchanged between the cell lines. These data suggest that the suppression of the PDGF-receptor tyrosine-kinase activity in ras-transformed cells is mediated via an inhibitory component, distinct from the receptor, that may be positively regulated by the dephosphorylation of tyrosine residue(s).

FEBS Letters ◽  
1994 ◽  
Vol 349 (1) ◽  
pp. 7-12 ◽  
Author(s):  
Andrea Berti ◽  
Stefania Rigacci ◽  
Giovanni Raugei ◽  
Donatella Degl'Innocenti ◽  
Giampietro Ramponi

1989 ◽  
Vol 262 (2) ◽  
pp. 665-668 ◽  
Author(s):  
M G Cattaneo ◽  
L M Vicentini

We investigated the mechanism(s) whereby activation of a growth-factor receptor typically endowed with tyrosine kinase activity, such as the platelet-derived growth factor (PDGF) receptor, triggers phosphoinositide hydrolysis. In Swiss 3T3 cells permeabilized with streptolysin O, an analogue of GTP, guanosine 5′-[gamma-thio]triphosphate, was found to potentiate the coupling of the bombesin receptor to phospholipase C. In contrast, the activation of the enzyme by PDGF occurred in a GTP-independent manner. Moreover, the inactive analogue of GTP, guanosine 5′-[beta-thio]diphosphate, significantly inhibited the bombesin-induced InsP3 generation, whereas it did not decrease the same effect when stimulated by PDGF.


1991 ◽  
Vol 11 (5) ◽  
pp. 2697-2703 ◽  
Author(s):  
C A Faaland ◽  
F H Mermelstein ◽  
J Hayashi ◽  
J D Laskin

Treatment of A431 human epidermoid cells with epidermal growth factor (EGF; 20 nM) results in decreased proliferation. This is associated with blockage of the cells in the S and/or G2 phases of the cell cycle. We found that tyrphostin, a putative tyrosine kinase inhibitor, in the range of 50 to 100 microM, partially reversed the growth-inhibitory and cell cycle changes induced by EGF. By using high-pressure liquid chromatography with electrochemical detection, we found that tyrphostin was readily incorporated into A431 cells, reaching maximal levels within 1 h. Although tyrphostin (50 to 100 microM) had no effect on high-affinity binding of EGF to its receptor in A431 cells for up to 24 h, the compound partially inhibited EGF-stimulated EGF receptor tyrosine kinase activity. However, this effect was evident only after prolonged treatment of the cells (4 to 24 h) with the drug. When the peak intracellular concentration of tyrphostin occurred (1 h), no inhibition of tyrosine kinase activity was observed. After both 1 and 24 h, tyrphostin was a less effective inhibitor of tyrosine kinase activity than the potent tumor promoter 12-O-tetradecanoyl phorbol-13-acetate, which almost completely blocked EGF receptor autophosphorylation. On the basis of our data, we hypothesize that tyrphostin is not a competitive inhibitor of the EGF receptor tyrosine kinase in intact cells and that it functions by an indirect mechanism.


Sign in / Sign up

Export Citation Format

Share Document