scholarly journals The effects of muscle contraction and insulin on glucose-transporter translocation in rat skeletal muscle

1994 ◽  
Vol 297 (3) ◽  
pp. 539-545 ◽  
Author(s):  
J T Brozinick ◽  
G J Etgen ◽  
B B Yaspelkis ◽  
J L Ivy

The effect of electrically induced muscle contraction, insulin (10 m-units/ml) and electrically-induced muscle contraction in the presence of insulin on insulin-regulatable glucose-transporter (GLUT-4) protein distribution was studied in female Sprague-Dawley rats during hindlimb perfusion. Plasma-membrane cytochalasin B binding increased approximately 2-fold, whereas GLUT-4 protein concentration increased approximately 1.5-fold above control with contractions, insulin, or insulin + contraction. Microsomal-membrane cytochalasin B binding and GLUT-4 protein concentration decreased by approx. 30% with insulin or insulin + contraction, but did not significantly decrease with contraction alone. The rate of muscle glucose uptake was assessed by determining the rate of 2-deoxy[3H]glucose accumulation in the soleus, plantaris, and red and white portions of the gastrocnemius. Both contraction and insulin increased glucose uptake significantly and to the same degree in the muscles examined. Insulin + contraction increased glucose uptake above that of insulin or contraction alone, but this effect was only statistically significant in the soleus, plantaris and white gastrocnemius. The combined effects of insulin + contraction of glucose uptake were not fully additive in any of the muscles investigated. These results suggest that (1) insulin and muscle contraction are mobilizing two separate pools of GLUT-4 protein, and (2) the increase in skeletal-muscle glucose uptake due to insulin + contraction is not due to an increase in plasma-membrane GLUT-4 protein concentration above that observed for insulin or contraction alone.

1991 ◽  
Vol 70 (4) ◽  
pp. 1593-1600 ◽  
Author(s):  
G. D. Cartee ◽  
A. G. Douen ◽  
T. Ramlal ◽  
A. Klip ◽  
J. O. Holloszy

Hypoxia caused a progressive cytochalasin B-inhibitable increase in the rate of 3-O-methylglucose transport in rat epitrochlearis muscles to a level approximately six-fold above basal. Muscle ATP concentration was well maintained during hypoxia, and increased glucose transport activity was still present after 15 min of reoxygenation despite repletion of phosphocreatine. However, the increase in glucose transport activity completely reversed during a 180-min-long recovery in oxygenated medium. In perfused rat hindlimb muscles, hypoxia caused an increase in glucose transporters in the plasma membrane, suggesting that glucose transporter translocation plays a role in the stimulation of glucose transport by hypoxia. The maximal effects of hypoxia and insulin on glucose transport activity were additive, whereas the effects of exercise and hypoxia were not, providing evidence suggesting that hypoxia and exercise stimulate glucose transport by the same mechanism. Caffeine, at a concentration too low to cause muscle contraction or an increase in glucose transport by itself, markedly potentiated the effect of a submaximal hypoxic stimulus on sugar transport. Dantrolene significantly inhibited the hypoxia-induced increase in 3-O-methylglucose transport. These effects of caffeine and dantrolene suggest that Ca2+ plays a role in the stimulation of glucose transport by hypoxia.


1996 ◽  
Vol 313 (1) ◽  
pp. 133-140 ◽  
Author(s):  
Joseph T. BROZINICK ◽  
Benedict B. YASPELKIS ◽  
Cindy M. WILSON ◽  
Kristen E. GRANT ◽  
E. Michael GIBBS ◽  
...  

The aim of the present investigation was to determine whether the subcellular distribution and insulin-stimulated translocation of the GLUT4 isoform of the glucose transporter are affected when GLUT4 is overexpressed in mouse skeletal muscle, and if the overexpression of GLUT4 alters maximal insulin-stimulated glucose transport and metabolism. Rates of glucose transport and metabolism were assessed by hind-limb perfusion in GLUT4 transgenic (TG) mice and non-transgenic (NTG) controls. Glucose-transport activity was determined under basal (no insulin), submaximal (0.2 m-unit/ml) and maximal (10 m-units/ ml) insulin conditions using a perfusate containing 8 mM 3-O-methyl-D-glucose. Glucose metabolism was quantified by perfusing the hind limbs for 25 min with a perfusate containing 8 mM glucose and 10 m-units/ml insulin. Under basal conditions, there was no difference in muscle glucose transport between TG (1.10±0.10 μmol/h per g; mean±S.E.M.) and NTG (0.93±0.16 μmol/h per g) mice. However, TG mice displayed significantly greater glucose-transport activity during submaximal (4.42±0.49 compared with 2.69±0.33 μmol/h per g) and maximal (11.68±1.13 compared with 7.53±0.80 μmol/h per g) insulin stimulation. Nevertheless, overexpression of the GLUT4 protein did not alter maximal rates of glucose metabolism. Membrane purification revealed that, under basal conditions, plasma-membrane (~ 12-fold) and intracellular-membrane (~ 4-fold) GLUT4 protein concentrations were greater in TG than NTG mice. Submaximal insulin stimulation did not increase plasma-membrane GLUT4 protein concentration whereas maximal insulin stimulation increased this protein in both NTG (4.1-fold) and TG (2.6-fold) mice. These results suggest that the increase in insulin-stimulated glucose transport following overexpression of the GLUT4 protein is limited by factors other than the plasma-membrane GLUT4 protein concentration. Furthermore, GLUT4 overexpression is not coupled to glucose-metabolic capacity.


Endocrinology ◽  
2007 ◽  
Vol 148 (11) ◽  
pp. 5248-5257 ◽  
Author(s):  
Mònica Díaz ◽  
Costin N. Antonescu ◽  
Encarnación Capilla ◽  
Amira Klip ◽  
Josep V. Planas

In mammals, glucose transporter (GLUT)-4 plays an important role in glucose homeostasis mediating insulin action to increase glucose uptake in insulin-responsive tissues. In the basal state, GLUT4 is located in intracellular compartments and upon insulin stimulation is recruited to the plasma membrane, allowing glucose entry into the cell. Compared with mammals, fish are less efficient restoring plasma glucose after dietary or exogenous glucose administration. Recently our group cloned a GLUT4-homolog in skeletal muscle from brown trout (btGLUT4) that differs in protein motifs believed to be important for endocytosis and sorting of mammalian GLUT4. To study the traffic of btGLUT4, we generated a stable L6 muscle cell line overexpressing myc-tagged btGLUT4 (btGLUT4myc). Insulin stimulated btGLUT4myc recruitment to the cell surface, although to a lesser extent than rat-GLUT4myc, and enhanced glucose uptake. Interestingly, btGLUT4myc showed a higher steady-state level at the cell surface under basal conditions than rat-GLUT4myc due to a higher rate of recycling of btGLUT4myc and not to a slower endocytic rate, compared with rat-GLUT4myc. Furthermore, unlike rat-GLUT4myc, btGLUT4myc had a diffuse distribution throughout the cytoplasm of L6 myoblasts. In primary brown trout skeletal muscle cells, insulin also promoted the translocation of endogenous btGLUT4 to the plasma membrane and enhanced glucose transport. Moreover, btGLUT4 exhibited a diffuse intracellular localization in unstimulated trout myocytes. Our data suggest that btGLUT4 is subjected to a different intracellular traffic from rat-GLUT4 and may explain the relative glucose intolerance observed in fish.


1994 ◽  
Vol 267 (1) ◽  
pp. R236-R243 ◽  
Author(s):  
J. T. Brozinick ◽  
G. J. Etgen ◽  
B. B. Yaspelkis ◽  
J. L. Ivy

The rates of muscle glucose uptake of lean and obese Zucker rats were assessed by hindlimb perfusion under basal conditions (no insulin), in the presence of a maximally stimulating concentration of insulin (10 mU/ml), and after muscle contraction elicited by electrical stimulation of the sciatic nerve. After perfusion, plasma and microsomal membranes were isolated from selected hindlimb muscles for determination of GLUT-4 protein distribution. Under basal conditions, rates of glucose uptake were similar for lean and obese rats despite plasma membranes from lean rats containing 82% more GLUT-4 protein than obese rats. Insulin stimulation resulted in significant increases in plasma membrane GLUT-4 protein concentration in lean but not obese rats. Glucose uptake of lean rats (35.3 +/- 4.7 mumol.h-1.g-1) in the presence of insulin was approximately fourfold greater than that of obese rats (8.8 +/- 1.3 mumol.h-1.g-1), but this difference in glucose uptake could not be completely accounted for by the difference in plasma membrane GLUT-4 protein concentration. Stimulation by contraction resulted in significant increases in plasma membrane GLUT-4 protein concentration in both lean and obese rats and similar rates of glucose uptake. These results suggest that the muscle insulin resistance of the obese Zucker rat is due to 1) a reduced plasma membrane GLUT-4 protein concentration, which results in part from an impairment in the insulin-stimulated GLUT-4 protein translocation process, and 2) a defect in the insulin-stimulated activation of this protein. However, contraction-stimulated glucose uptake, GLUT-4 protein translocation, and activation are normal in the obese Zucker rat.


1993 ◽  
Vol 265 (3) ◽  
pp. E419-E427 ◽  
Author(s):  
J. T. Brozinick ◽  
G. J. Etgen ◽  
B. B. Yaspelkis ◽  
H. Y. Kang ◽  
J. L. Ivy

The rates of muscle glucose uptake of trained (TR) and untrained (UT) obese Zucker rats were assessed by hindlimb perfusion under basal conditions (no insulin) in the presence of a maximally stimulating concentration of insulin (10 mU/ml) and after muscle contraction elicited by electrical stimulation of the sciatic nerve. Perfusate contained 28 mM glucose and 7.5 microCi/mmol of 2-deoxy-D-[3H]glucose. Muscle GLUT-4 concentration was determined by Western blot analysis and expressed as a percentage of a heart standard. The rates of insulin-stimulated glucose uptake were significantly higher in the plantaris, red gastrocnemius (RG), and white gastrocnemius (WG), but not the soleus or extensor digatorum longus (EDL) of TR compared with UT rats. After muscle contraction the rates of glucose uptake in the TR rats were significantly higher in the soleus, plantaris, and RG. TR rats had significantly higher GLUT-4 protein concentration and citrate synthase activity than the UT rats in the soleus, plantaris, RG, and WG. Basal plasma membrane GLUT-4 protein concentration of TR rats was 144% above UT rats (P < 0.01). Stimulation by insulin and contraction resulted in a significant increase in plasma membrane GLUT-4 protein concentration in UT rats only. However, plasma membrane GLUT-4 protein concentration in insulin- and contraction-stimulated TR rats remained 53% and 30% greater than that of UT rats, respectively (P < 0.05). Exercise training did not alter basal, insulin-, or contraction-stimulated GLUT-4 functional activity.(ABSTRACT TRUNCATED AT 250 WORDS)


1997 ◽  
Vol 273 (3) ◽  
pp. C1082-C1087 ◽  
Author(s):  
A. D. Lee ◽  
P. A. Hansen ◽  
J. Schluter ◽  
E. A. Gulve ◽  
J. Gao ◽  
...  

beta-Adrenergic stimulation has been reported to inhibit insulin-stimulated glucose transport in adipocytes. This effect has been attributed to a decrease in the intrinsic activity of the GLUT-4 isoform of the glucose transporter that is mediated by phosphorylation of GLUT-4. Early studies showed no inhibition of insulin-stimulated glucose transport by epinephrine in skeletal muscle. The purpose of this study was to determine the effect of epinephrine on GLUT-4 phosphorylation, and reevaluate the effect of beta-adrenergic stimulation on insulin-activated glucose transport, in skeletal muscle. We found that 1 microM epinephrine, which raised adenosine 3',5'-cyclic monophosphate approximately ninefold, resulted in GLUT-4 phosphorylation in rat skeletal muscle but had no inhibitory effect on insulin-stimulated 3-O-methyl-D-glucose (3-MG) transport. In contrast to 3-MG transport, the uptakes of 2-deoxyglucose and glucose were markedly inhibited by epinephrine treatment. This inhibitory effect was presumably mediated by stimulation of glycogenolysis, which resulted in an increase in glucose 6-phosphate concentration to levels known to severely inhibit hexokinase. We conclude that 1) beta-adrenergic stimulation decreases glucose uptake by raising glucose 6-phosphate concentration, thus inhibiting hexokinase, but does not inhibit insulin-stimulated glucose transport and 2) phosphorylation of GLUT-4 has no effect on glucose transport in skeletal muscle.


1998 ◽  
Vol 274 (5) ◽  
pp. R1446-R1453 ◽  
Author(s):  
T. S. David ◽  
P. A. Ortiz ◽  
T. R. Smith ◽  
J. Turinsky

Rat epididymal adipocytes were incubated with 0, 0.1, and 1 mU sphingomyelinase/ml for 30 or 60 min, and glucose uptake and GLUT-1 and GLUT-4 translocation were assessed. Adipocytes exposed to 1 mU sphingomyelinase/ml exhibited a 173% increase in glucose uptake. Sphingomyelinase had no effect on the abundance of GLUT-1 in the plasma membrane of adipocytes. In contrast, 1 mU sphingomyelinase/ml increased plasma membrane content of GLUT-4 by 120% and produced a simultaneous decrease in GLUT-4 abundance in the low-density microsomal fraction. Sphingomyelinase had no effect on tyrosine phosphorylation of either the insulin receptor β-subunit or the insulin receptor substrate-1, a signaling molecule in the insulin signaling pathway. It is concluded that the incubation of adipocytes with sphingomyelinase results in insulin-like translocation of GLUT-4 to the plasma membrane and that this translocation does not occur via the activation of the initial components of the insulin signaling pathway.


1995 ◽  
Vol 268 (4) ◽  
pp. E613-E622 ◽  
Author(s):  
A. Guma ◽  
J. R. Zierath ◽  
H. Wallberg-Henriksson ◽  
A. Klip

Understanding the molecular mechanisms involved in the regulation of glucose transport into human muscle is necessary to unravel possible defects in glucose uptake associated with insulin resistance in humans. Here we report a strategy to subfractionate human skeletal muscle biopsies (0.5 g) removed from vastus lateralis during a euglycemic insulinemic clamp procedure. A sucrose gradient separated total membranes into five fractions. Fraction 25 (25% sucrose) contained the plasma membrane markers alpha 1- and alpha 2-subunits of the Na(+)-K(+)-adenosinetriphosphatase and the GLUT-5 hexose transporter, recently immunolocalized to the cell surface of human skeletal muscle. The dihydropyridine receptor, a transverse tubule marker, was present exclusively in this fraction. The GLUT-4 glucose transporter was more concentrated in fraction 27.5 (27.5% sucrose) and largely diminished in plasma membrane markers. Open skeletal muscle biopsies were removed before and 30 min after clamping insulin to 550 pM. This increased GLUT-4 protein by 1.61-fold in fraction 25 and lowered it by 50% in fraction 27.5. Thus physiological concentrations of insulin induce translocation of glucose transporters from an internal membrane pool to surface membranes in human skeletal muscle.


1990 ◽  
Vol 68 (1) ◽  
pp. 193-198 ◽  
Author(s):  
L. J. Goodyear ◽  
M. F. Hirshman ◽  
P. A. King ◽  
E. D. Horton ◽  
C. M. Thompson ◽  
...  

Recent reports have shown that immediately after an acute bout of exercise the glucose transport system of rat skeletal muscle plasma membranes is characterized by an increase in both glucose transporter number and intrinsic activity. To determine the duration of the exercise response we examined the time course of these changes after completion of a single bout of exercise. Male rats were exercised on a treadmill for 1 h (20 m/min, 10% grade) or allowed to remain sedentary. Rats were killed either immediately or 0.5 or 2 h after exercise, and red gastrocnemius muscle was used for the preparation of plasma membranes. Plasma membrane glucose transporter number was elevated 1.8- and 1.6-fold immediately and 30 min after exercise, although facilitated D-glucose transport in plasma membrane vesicles was elevated 4- and 1.8-fold immediately and 30 min after exercise, respectively. By 2 h after exercise both glucose transporter number and transport activity had returned to nonexercised control values. Additional experiments measuring glucose uptake in perfused hindquarter muscle produced similar results. We conclude that the reversal of the increase in glucose uptake by hindquarter skeletal muscle after exercise is correlated with a reversal of the increase in the glucose transporter number and activity in the plasma membrane. The time course of the transport-to-transporter ratio suggests that the intrinsic activity response reverses more rapidly than that involving transporter number.


2019 ◽  
Vol 317 (6) ◽  
pp. E957-E972
Author(s):  
Brent A. Fujimoto ◽  
Madison Young ◽  
Lamar Carter ◽  
Alina P. S. Pang ◽  
Michael J. Corley ◽  
...  

Skeletal muscle handles ~80–90% of the insulin-induced glucose uptake. In skeletal muscle, insulin binding to its cell surface receptor triggers redistribution of intracellular glucose transporter GLUT4 protein to the cell surface, enabling facilitated glucose uptake. In adipocytes, the eight-protein exocyst complex is an indispensable constituent in insulin-induced glucose uptake, as it is responsible for the targeted trafficking and plasma membrane-delivery of GLUT4. However, the role of the exocyst in skeletal muscle glucose uptake has never been investigated. Here we demonstrate that the exocyst is a necessary factor in insulin-induced glucose uptake in skeletal muscle cells as well. The exocyst complex colocalizes with GLUT4 storage vesicles in L6-GLUT4myc myoblasts at a basal state and associates with these vesicles during their translocation to the plasma membrane after insulin signaling. Moreover, we show that the exocyst inhibitor endosidin-2 and a heterozygous knockout of Exoc5 in skeletal myoblast cells both lead to impaired GLUT4 trafficking to the plasma membrane and hinder glucose uptake in response to an insulin stimulus. Our research is the first to establish that the exocyst complex regulates insulin-induced GLUT4 exocytosis and glucose metabolism in muscle cells. A deeper knowledge of the role of the exocyst complex in skeletal muscle tissue may help our understanding of insulin resistance in type 2 diabetes.


Sign in / Sign up

Export Citation Format

Share Document