scholarly journals A new inositol 1,4,5-trisphosphate binding protein similar to phospholipase C-δ1

1996 ◽  
Vol 313 (1) ◽  
pp. 319-325 ◽  
Author(s):  
Takashi KANEMATSU ◽  
Yoshio MISUMI ◽  
Yutaka WATANABE ◽  
Shoichiro OZAKI ◽  
Toshitaka KOGA ◽  
...  

We have reported that two inositol 1,4,5-trisphosphate binding proteins, with molecular masses of 85 and 130 kDa, were purified from rat brain; the former protein was found to be the ∆1-isoenzyme of phospholipase C (PLC-∆1) and the latter was an unidentified novel protein [Kanematsu, Takeya, Watanabe, Ozaki, Yoshida, Koga, Iwanaga and Hirata (1992) J. Biol. Chem. 267, 6518-6525]. Here we describe the isolation of the full-length cDNA for the 130 kDa Ins(1,4,5)P3 binding protein, which encodes 1096 amino acids. The predicted sequence of the 130 kDa protein had 38.2% homology to that of PLC-∆1. Three known domains of PLC-∆1 (pleckstrin homology and putative catalytic X and Y domains) were located at residues 110-222, 377-544 and 585-804 with 35.2%, 48.2% and 45.8% homologies respectively. However, the protein showed no PLC activity to phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol. The 130 kDa protein expressed by transfection in COS-1 cells bound Ins(1,4,5)P3 in the same way as the molecule purified from brain. Thus the 130 kDa protein is a novel Ins(1,4,5)P3 binding protein homologous to PLC-∆1, but with no catalytic activity. The functional significance of the 130 kDa protein is discussed.

2001 ◽  
Vol 204 (3) ◽  
pp. 487-493
Author(s):  
A. Kishigami ◽  
T. Ogasawara ◽  
Y. Watanabe ◽  
M. Hirata ◽  
T. Maeda ◽  
...  

The main phototransduction cascade in invertebrate visual cells involves the turnover of phosphatidylinositol, an important biochemical mechanism common to many signal-transduction systems. Light-activated rhodopsin stimulates guanine nucleotide exchange on the Gq class of G-protein, which activates phospholipase C to hydrolyze phosphatidylinositol 4,5-bisphosphate to inositol-1,4,5-trisphosphate and diacylglycerol. Subsequently, inositol-1,4,5-trisphosphate-binding proteins continue the signal cascade. Here, we report on the first inositol-1,4,5-trisphosphate-binding proteins demonstrated in an invertebrate visual system with our investigation of the photosensitive rhabdoms of squid. We screened the ability of proteins to interact with inositol-1,4,5-trisphosphate by affinity column chromatography with an inositol-1,4,5-trisphosphate analogue. We detected an inositol-1,4,5-trisphosphate-binding affinity in phospholipase C, receptor kinase and five other proteins in the cytosolic fraction and, surprisingly, rhodopsin in the membrane fraction. A binding assay with (3)H-labelled inositol-1,4,5-trisphosphate demonstrated the inositol-1,4,5-trisphosphate affinity of each of the purified proteins. Since rhodopsin, receptor kinase and phospholipase C are involved upstream of phosphatidylinositol turnover in the signal cascade, our result suggests that phosphatidylinositol turnover is important in feedback pathways in the signalling system.


1997 ◽  
Vol 326 (1) ◽  
pp. 221-225 ◽  
Author(s):  
Shinji TOGASHI ◽  
Kazunaga TAKAZAWA ◽  
Toyoshi ENDO ◽  
Christophe ERNEUX ◽  
Toshimasa ONAYA

A series of key amino acids involved in Ins(1,4,5)P3 (InsP3) binding and catalytic activity of rat brain InsP3 3-kinase has been identified. The catalytic domain is at the C-terminal end and restricted to a maximum of 275 amino acids [Takazawa and Erneux (1991) Biochem. J. 280, 125–129]. In this study, newly prepared 5′-deletion and site-directed mutants have been compared both for InsP3 binding and InsP3 3-kinase activity. When the protein was expressed from L259 to R459, the activity was lost but InsP3 binding was conserved. Another deletion mutant that had lost only four amino acids after L259 had lost InsP3 binding, and this finding suggests that these residues (i.e. L259DCK262) are involved in InsP3 binding. To further support the data, we have produced two mutants by site-directed mutagenesis on residues C261 and K262. The two new enzymes were designated M4 (C261S) and M5 (K262A). M4 showed similar Vmax and Km values for InsP3 and ATP to wild-type enzyme. In contrast, M5 was totally inactive but had kept the ability to bind to calmodulin–Sepharose. C-terminal deletion mutants that had lost five, seven or nine amino acids showed a large decrease in InsP3 binding and InsP3 3-kinase activity. One mutant that had lost five amino acids (M2) was purified to apparent homogeneity: Km values for both substrates appeared unchanged but Vmax was decreased approx. 40-fold compared with the wild-type enzyme. The results indicate that (1) a positively charged amino acid residue K262 is essential for InsP3 binding and (2) amino acids at the C-terminal end of the protein are necessary to act as a catalyst in the InsP3 3-kinase reaction.


1994 ◽  
Vol 115 (5) ◽  
pp. 973-980 ◽  
Author(s):  
Masako Yoshida ◽  
Takashi Kanematsu ◽  
Yutaka Watanabe ◽  
Toshitaka Koga ◽  
Shoichiro Ozaki ◽  
...  

1989 ◽  
Vol 263 (2) ◽  
pp. 613-616 ◽  
Author(s):  
D K Shori ◽  
R L Dormer ◽  
M C Goodchild ◽  
M A McPherson

Calmodulin-binding proteins in fractions purified from human submandibular glands by calmodulin-Sepharose were phosphorylated with [gamma-32P]ATP, in the absence of exogenous protein kinase. The major proteins phosphorylated had molecular masses of 45, 51 and 61 kDa. Phosphorylation was increased by activators of protein kinase C and inhibited by H-7. Phosphorylation of the 61 kDa band was markedly decreased in cystic-fibrosis submandibular glands.


1991 ◽  
Vol 260 (3) ◽  
pp. F347-F352
Author(s):  
C. P. Thomas ◽  
M. Kester ◽  
M. J. Dunn

The mechanisms of stimulation of phospholipase C (PLC) by endothelin, specifically the role of guanine nucleotide-binding proteins (GTP-binding proteins) in coupling the endothelin receptor to PLC, were investigated in rat mesangial cells. Endothelin-1 (ET) synergistically released inositol polyphosphates in the presence of the stimulatory GTP analogue guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) in permeabilized cells. In addition, in intact cells, pertussis toxin partially inhibited the stimulation of total inositol phosphates (IPn) by ET. Pertussis toxin also reduced the peak ET-stimulated intracellular free calcium level ([Ca2+]i) in these cells, both in the presence and absence of extracellular calcium. Pertussis toxin induced ADP ribosylation of a 41- to 43-kDa protein in mesangial cell membranes, and this effect was inhibited by prior exposure to ET and augmented by the inhibitory GDP analogue, guanosine 5'-O-(2-thiodiphosphate) (GDP beta S). Thus a pertussis toxin-sensitive GTP-binding protein is involved in the activation of PLC by ET in glomerular mesangial cells.


1987 ◽  
Author(s):  
Eduardo G Lapetina

It is now widely recognized that the activation of phospholipase C by specific agonists leads to the formation of two second messengers: (1) inositol trisphosphate, which releases Ca2+ from the endoplasmic reticulum to the cytosol and (2) 1,2- diacylglycerol, which stimulates protein kinase C. In the past few years, GTP-binding proteins have been associated with the regulation of phospholipase C. However, the identity of the GTP-binding protein involved and the type of association with phospholipase C is not yet known. It is now recognized that there are two types of phospholipase C enzymes: (a) a soluble enzyme that has been characterized in several tissues and does not preferentially hydrolyze polyphospholinositides and (b) membrane-bound enzymes that are coupled to the receptors, specifically hydrolyzing polyphosphoinositides and activated by membrane guanine nucleotide-binding proteins. Recent reports have tried to assess the involvement of GTP-binding proteins in the agonist-induced stimulation of phospholipase C, and various related aspects have been reported. These are concerned with: (a) detection of various GTP-binding proteins in platelets, (b) the effects of known inhibitors of GTP-binding proteins such as GDPgS or pertussis toxin on the agonist-induced stimulation of phospholipase C, (c) the direct effects of stimulators of GTP-binding proteins such as GTP, GTP-analogs and fluoride on phospholipase C activity, (d) the possible association of GTP-binding proteins to cytosolic phospholipase C that would then lead to degradation of the membrane-bound inositides and (e) cytosolic phospholipase C response to the activation of cell surface receptors. The emerging information has had contradictory conclusions. (1) Pretreatment of saponin-permeabilized platelets with pertussis toxin has been shown to enhance and to inhibit the thrombin-induced activation of phospholipase C. Therefore, it is not clear if a G protein that is affected by pertussis toxin in a manner similar to Gi or Go plays a central role in activation of phospholipase C. (2) Studies on the effect of GDPβ;S are also conflicting indicating that there may be GTP-independent and/or -dependent pathways for the activation of phosphoinositide hydrolysis. (3) A cytosolic phospholipase C is activated by GTP, and it has been advanced that this activity might trigger the hydrolysis of membrane-bound inositides. A cytosolic GTP-binding protein might be involved in this action, and it is speculated that an α-subunit might be released to the cytoplasm by a receptor-coupled mechanism to activate phospholipase C. However, no direct evidence exists to support this conclusion. Moreover, the exact contribution of phospholipase C from the membranes or the cytosol to inositide hydrolysis in response to cellular agonists and the relationship of those activites to membrane-bound or soluble GTP-binding proteins are unknown. Our results indicate that the stimulation of phospholipase C in platelets by GDPβS and thrombin are affected differently by GDPβS. GDPgSinhibits the formation of inositol phosphates produced by GTPγS but not that induced by thrombin. Thrombin, therefore, can directly stimulate phospholipase C without the involvement of a “stimulatory” GTP-binding protein, such as Gs, for the agonist stimulation of adenylate cyclase. However, an “inhibitory” GTP-binding protein might have some influence on thrombin-stimulated phospholipase C, since in the presence of GDPγS thrombin produces a more profound stimulation of phospholipase C.This “inhibitory” GTP-binding protein might be ADP-ribosylated by pertussis toxin because pertussis toxin can also enhance thrombin action on phospholipase C activity. Therefore, phospholipase C that responds to thrombin could be different from the one that responds to GTPγS. Cytosolic phospholipase C can be activated by GTP or GTP analogs, and the one that responds to thrombin should be coupled to the receptors present in the plasma membrane. The initial action of thrombin is to directly activate the plasma membrane-bound phospholipase C and the mechanism of this activation is probably related to the proteolytic action of thrombin or the activation of platelet proteases by thrombin. In agreement with this, trypsin can also directly activate platelet phospholipase C and, subsequently, GTPyS produces further activation of phospholipase C. If these two mechanisms are operative in platelets, the inhibition of cytosolic phospholipase C by GDPβS would allow a larger fraction of inositides for degradation of the thrombin-stimulated phospholipase C, as our results show.


1992 ◽  
Vol 267 (10) ◽  
pp. 6518-6525
Author(s):  
T Kanematsu ◽  
H Takeya ◽  
Y Watanabe ◽  
S Ozaki ◽  
M Yoshida ◽  
...  

1998 ◽  
Vol 257 (2) ◽  
pp. 97-100 ◽  
Author(s):  
Miho Matsuda ◽  
Takashi Kanematsu ◽  
Hiroshi Takeuchi ◽  
Toshio Kukita ◽  
Masato Hirata

Sign in / Sign up

Export Citation Format

Share Document