scholarly journals Mutations within the propeptide, the primary cleavage site or the catalytic site, or deletion of C-terminal sequences, prevents secretion of proPC2 from transfected COS-7 cells

1997 ◽  
Vol 321 (2) ◽  
pp. 367-373 ◽  
Author(s):  
Neil A. TAYLOR ◽  
Kathleen I. J. SHENNAN ◽  
Daniel F. CUTLER ◽  
Kevin DOCHERTY

PC2 is a neuroendocrine endoprotease involved in the processing of prohormones and proneuropeptides. PC2 is synthesized as a proenzyme which undergoes proteolytic maturation within the cellular secretory apparatus. Cleavage occurs at specific sites to remove the N-terminal propeptide. The aim of the present study was to investigate structural requirements for the transfer of proPC2 through the secretory pathway. A series of mutant proPC2 constructs were transfected into COS-7 cells and the fate of the expressed proteins followed by pulseŐchase analysis and immunocytochemistry. Human PC2 was secreted relatively slowly, and appeared in the medium primarily as proPC2 (75 kDa), together with much lower amounts of a processed intermediate (71 kDa) and mature PC2 (68 kDa). Mutations within the primary processing site or the catalytic triad caused the protein to accumulate intracellularly, whereas deletion of part of the propeptide, the P-domain or the C-terminal regions also prevented secretion. Immunocytochemistry showed that wild-type hPC2 was localized mainly in the Golgi, whereas two representative mutants showed a distribution typical of proteins resident in the endoplasmic reticulum. The results suggest that proenzyme processing is not essential for secretion of PC2, but peptides containing mutations that affect the ability of the propeptide (and cleavage sites) to fold within the catalytic pocket are not transferred beyond the early stages of the secretory pathway. C-terminal sequences may be involved in stabilizing such conformations.

2004 ◽  
Vol 3 (5) ◽  
pp. 1164-1168 ◽  
Author(s):  
Yvonne Weber ◽  
Stephan K.-H. Prill ◽  
Joachim F. Ernst

ABSTRACT Sec20p is an essential endoplasmic reticulum (ER) membrane protein in yeasts, functioning as a tSNARE component in retrograde vesicle traffic. We show that Sec20p in the human fungal pathogen Candida albicans is extensively O mannosylated by protein mannosyltransferases (Pmt proteins). Surprisingly, Sec20p occurs at wild-type levels in a pmt6 mutant but at very low levels in pmt1 and pmt4 mutants and also after replacement of specific Ser/Thr residues in the lumenal domain of Sec20p. Pulse-chase experiments revealed rapid degradation of unmodified Sec20p (38.6 kDa) following its biosynthesis, while the stable O-glycosylated form (50 kDa) was not formed in a pmt1 mutant. These results suggest a novel function of O mannosylation in eukaryotes, in that modification by specific Pmt proteins will prevent degradation of ER-resident membrane proteins via ER-associated degradation or a proteasome-independent pathway.


2008 ◽  
Vol 415 (1) ◽  
pp. 35-43 ◽  
Author(s):  
Jens F. Rehfeld ◽  
Xiaorong Zhu ◽  
Christina Norrbom ◽  
Jens R. Bundgaard ◽  
Anders H. Johnsen ◽  
...  

Cellular synthesis of peptide hormones requires PCs (prohormone convertases) for the endoproteolysis of prohormones. Antral G-cells synthesize the most gastrin and express PC1/3, 2 and 5/6 in the rat and human. But the cleavage sites in progastrin for each PC have not been determined. Therefore, in the present study, we measured the concentrations of progastrin, processing intermediates and α-amidated gastrins in antral extracts from PC1/3-null mice and compared the results with those in mice lacking PC2 and wild-type controls. The expression of PCs was examined by immunocytochemistry and in situ hybridization of mouse G-cells. Finally, the in vitro effect of recombinant PC5/6 on progastrin and progastrin fragments containing the relevant dibasic cleavage sites was also examined. The results showed that mouse G-cells express PC1/3, 2 and 5/6. The concentration of progastrin in PC1/3-null mice was elevated 3-fold. Chromatography showed that cleavage of the Arg36Arg37 and Arg73Arg74 sites were grossly decreased. Accordingly, the concentrations of progastrin products were markedly reduced, α-amidated gastrins (-34 and -17) being 25% of normal. Lack of PC1/3 was without effect on the third dibasic site (Lys53Lys54), which is the only processing site for PC2. Recombinant PC5/6 did not cleave any of the dibasic processing sites in progastrin and fragments containing the relevant dibasic processing sites. The complementary cleavages of PC1/3 and 2, however, suffice to explain most of the normal endoproteolysis of progastrin. Moreover, the results show that PCs react differently to the same dibasic sequences, suggesting that additional structural factors modulate the substrate specificity.


1983 ◽  
Vol 3 (8) ◽  
pp. 1362-1370 ◽  
Author(s):  
H. Bussey ◽  
D. Saville ◽  
D. Greene ◽  
D. J. Tipper ◽  
K. A. Bostian

Killer toxin secretion was blocked at the restrictive temperature inSaccharomyces cerevisiae secmutants with conditional defects in theS. cerevisiaesecretory pathway leading to accumulation of endoplasmic reticulum (sec18), Golgi (sec7), or secretory vesicles (sec1). A 43,000-molecular-weight (43K) glycosylated protoxin was found by pulse-labeling in allsecmutants at the restrictive temperature. Insec18the protoxin was stable after a chase; but insec7andsec1the protoxin was unstable, and insec111K toxin was detected in cell lysates. The chymotrypsin inhibitor tosyl-l-phenylalanyl chloromethyl ketone (TPCK) blocked toxin secretion in vivo in wild-type cells by inhibiting protoxin cleavage. The unstable protoxin in wild-type and insec7andsec1cells at the restrictive temperature was stabilized by TPCK, suggesting that the protoxin cleavage was post-sec18and was mediated by a TPCK-inhibitable protease. Protoxin glycosylation was inhibited by tunicamycin, and a 36K protoxin was detected in inhibited cells. This 36K protoxin was processed, but toxin secretion was reduced 10-fold. We examined twokexmutants defective in toxin secretion; both synthesized a 43K protoxin, which was stable inkex1but unstable inkex2. Protoxin stability inkex1 kex2double mutants indicated the orderkex1→kex2in the protoxin processing pathway. TPCK did not block protoxin instability inkex2mutants. This suggested that theKEX1- andKEX2-dependent steps preceded thesec7Golgi block. We attempted to localize the protoxin inS. cerevisiaecells. Use of an in vitro rabbit reticulocyte-dog pancreas microsomal membrane system indicated that protoxin synthesized in vitro could be inserted into and glycosylated by the microsomal membranes. This membrane-associated protoxin was protected from trypsin proteolysis. Pulse-chased cells or spheroplasts, with or without TPCK, failed to secrete protoxin. The protoxin may not be secreted into the lumen of the endoplasmic reticulum, but may remain membrane associated and may require endoproteolytic cleavage for toxin secretion.


1998 ◽  
Vol 21 (2) ◽  
pp. 209-216 ◽  
Author(s):  
NA Taylor ◽  
G Jan ◽  
KT Scougall ◽  
K Docherty ◽  
KI Shennan

PC2 and PC3 are neuroendocrine specific members of the eukaryotic subtilisin-like proprotein convertase (PC) family. Both are sorted via the regulated secretory pathway into secretory granules. In order to identify sequences in PC2 which are involved in targeting to the regulated secretory pathway we expressed a series of PC2 cDNAs containing mutations in the C terminal or propeptide domains in the mouse corticotrophic AtT20 cell line. Sorting of endogenous PC3 was used as a control. PC2 and PC3 were secreted with similar kinetics and sorted to secretory granules with similar efficiencies. Deletions of up to 50 amino acids from the C-terminus of proPC2 had no effect on secretion or sorting, but larger deletions completely prevented maturation or secretion. Two large deletions within the propeptide also prevented secretion. Smaller deletions between the primary and secondary cleavage sites, or of the primary cleavage site, reduced the amount of protein secreted but did not affect sorting to secretory granules. Replacement of the propeptide of PC2 with that of the endogenous PC3 also had no effect on secretion or sorting. The results indicate that targeting of proPC2 to the regulated secretory pathway is dependent on more than one region within the proPC2 molecule.


1994 ◽  
Vol 302 (3) ◽  
pp. 641-648 ◽  
Author(s):  
R S McLeod ◽  
C Robbins ◽  
A Burns ◽  
Z Yao ◽  
P H Pritchard

Human apolipoprotein (apo) A-I is secreted as a proprotein of 249 amino acids and is processed extracellularly to the mature form (243 amino acids) by removal of a six-residue propeptide segment. We have examined the role of the apoA-I propeptide in intracellular transport and secretion using transfected baby hamster kidney cells that secreted either proapoA-I (from the wild-type cDNA, A-Iwt) or mature-form apoA-I (from A-I delta pro, a cDNA in which the propeptide sequence was deleted). Deletion of the propeptide from the apoA-I sequence did not affect the rate of apoA-I synthesis, nor did it affect the fidelity of proteolytic removal of the prepeptide. However, the propeptide deletion caused mature-form apoA-I to accumulate within the cells as determined by pulse-chase experiments; the intracellular retention times for the mature-form apoA-I in which the propeptide was prematurely removed was three times longer than that of proapoA-I (t1/2 > 3 h compared with approximately 50 min). There was no detectable degradation of either form of newly synthesized apoA-I. Immunofluorescence microscopy revealed that, whereas the proapoA-I was located predominantly in the Golgi apparatus, large quantities of the mature-form apoA-I were detected in the endoplasmic reticulum and very little was in the Golgi apparatus of A-I delta pro-transfected cells. These findings suggest that the propeptide sequence may be involved in the intracellular transport of apoA-I from the endoplasmic reticulum to the Golgi apparatus. We propose that the function of the propeptide sequence is to facilitate efficient transport of apoA-I through the secretory pathway.


1983 ◽  
Vol 3 (8) ◽  
pp. 1362-1370
Author(s):  
H. Bussey ◽  
D. Saville ◽  
D. Greene ◽  
D. J. Tipper ◽  
K. A. Bostian

Killer toxin secretion was blocked at the restrictive temperature in Saccharomyces cerevisiae sec mutants with conditional defects in the S. cerevisiae secretory pathway leading to accumulation of endoplasmic reticulum ( sec18 ), Golgi ( sec7 ), or secretory vesicles ( sec1 ). A 43,000-molecular-weight (43K) glycosylated protoxin was found by pulse-labeling in all sec mutants at the restrictive temperature. In sec18 the protoxin was stable after a chase; but in sec7 and sec1 the protoxin was unstable, and in sec1 11K toxin was detected in cell lysates. The chymotrypsin inhibitor tosyl- l -phenylalanyl chloromethyl ketone (TPCK) blocked toxin secretion in vivo in wild-type cells by inhibiting protoxin cleavage. The unstable protoxin in wild-type and in sec7 and sec1 cells at the restrictive temperature was stabilized by TPCK, suggesting that the protoxin cleavage was post- sec18 and was mediated by a TPCK-inhibitable protease. Protoxin glycosylation was inhibited by tunicamycin, and a 36K protoxin was detected in inhibited cells. This 36K protoxin was processed, but toxin secretion was reduced 10-fold. We examined two kex mutants defective in toxin secretion; both synthesized a 43K protoxin, which was stable in kex1 but unstable in kex2 . Protoxin stability in kex1 kex2 double mutants indicated the order kex1 → kex2 in the protoxin processing pathway. TPCK did not block protoxin instability in kex2 mutants. This suggested that the KEX1 - and KEX2 -dependent steps preceded the sec7 Golgi block. We attempted to localize the protoxin in S. cerevisiae cells. Use of an in vitro rabbit reticulocyte-dog pancreas microsomal membrane system indicated that protoxin synthesized in vitro could be inserted into and glycosylated by the microsomal membranes. This membrane-associated protoxin was protected from trypsin proteolysis. Pulse-chased cells or spheroplasts, with or without TPCK, failed to secrete protoxin. The protoxin may not be secreted into the lumen of the endoplasmic reticulum, but may remain membrane associated and may require endoproteolytic cleavage for toxin secretion.


2012 ◽  
Vol 11 (11) ◽  
pp. 1362-1370 ◽  
Author(s):  
Barry J. Bowman ◽  
Stephen Abreu ◽  
Jessica K. Johl ◽  
Emma Jean Bowman

ABSTRACTThepmrgene is predicted to encode a Ca2+-ATPase in the secretory pathway. We examined two strains ofNeurospora crassathat lacked PMR: the Δpmrstrain, in whichpmrwas completely deleted, andpmrRIP, in which the gene was extensively mutated. Both strains had identical, complex phenotypes. Compared to the wild type, these strains required high concentrations of calcium or manganese for optimal growth and had highly branched, slow-growing hyphae. They conidiated poorly, and the shape and size of the conidia were abnormal. Calcium accumulated in the Δpmrstrains to only 20% of the wild-type level. High concentrations of MnCl2(1 to 5 mM) in growth medium partially suppressed the morphological defects but did not alter the defect in calcium accumulation. The ΔpmrΔnca-2double mutant (nca-2encodes a Ca2+-ATPase in the plasma membrane) accumulated 8-fold more calcium than the wild type, and the morphology of the hyphae was more similar to that of wild-type hyphae. Previous experiments failed to show a function fornca-1, which encodes a SERCA-type Ca2+-ATPase in the endoplasmic reticulum (B. J. Bowman, S. Abreu, E. Margolles-Clark, M. Draskovic, and E. J. Bowman, Eukaryot. Cell 10:654-661, 2011). ThepmrRIPΔnca-1double mutant accumulated small amounts of calcium, like the Δpmrstrain, but exhibited even more extreme morphological defects. Thus, PMR can apparently replace NCA-1 in the endoplasmic reticulum, but NCA-1 cannot replace PMR. The morphological defects in the Δpmrstrain are likely caused, in part, by insufficient concentrations of calcium and manganese in the Golgi compartment; however, PMR is also needed to accumulate normal levels of calcium in the whole cell.


1997 ◽  
Vol 326 (3) ◽  
pp. 737-744 ◽  
Author(s):  
Juliette LUSSON ◽  
Suzanne BENJANNET ◽  
Josée HAMELIN ◽  
Diane SAVARIA ◽  
Michel CHRÉTIEN ◽  
...  

In order to define the functional importance of the conserved RRGDL motif in the P-domain of the mammalian proprotein convertases (PCs) we generated and cellularly expressed three mutant PC1 vaccinia-virus (VV) recombinants: ARGDL-PC1, RAGDL-PC1 and RRGEL-PC1. Functionally, these mutants caused a decreased level of processing of pro-opiomelanocortin (POMC) into β-lipotropic pituitary hormone (β-LPH), especially in the constitutively secreting BSC40 cells. Pulse–chase analyses demonstrated that, in part, this effect was due to both an increased degradation of the mutant PC1s within the endoplasmic reticulum and to a diminished level of zymogen processing in the same compartment. In addition, within cells containing secretory granules such as PC12 and GH4C1 cells, such mutations prevented the C-terminal auto-processing of PC1 into the fully mature 66 kDa form stored in the secretory granules of regulated cells. Since the 66 kDa PC1 is the most active form of the enzyme, it is proposed that the RRGDL sequence is critical for the generation of maximal intracellular PC1 activity. In regulated cells, co-expression of POMC with PC1 or its mutants together with the general PC inhibitor α1-antitrypsin Portland (α1-PDX), which acts primarily within the constitutive secretory pathway, demonstrated that the latter completely inhibited the formation of β-LPH by PC1 mutants, whereas it only partially inhibited the ability of wild-type PC1 to process POMC. This suggests that RRGDL mutations prevent PC1 from entering secretory granules and hence the formation of the 66 kDa PC1, and result in the mis-sorting of PC1 mutants towards the constitutive secretory pathway. This conclusion was further supported by immunocytochemical data demonstrating that RRGDL mutants exhibit an intracellular localization pattern different from that of the granule-associated wild-type PC1, but similar to that of the Golgi-localized convertase PC5-B.


2020 ◽  
Vol 51 (1) ◽  
Author(s):  
Rokshana Parvin ◽  
Jan Schinkoethe ◽  
Christian Grund ◽  
Reiner Ulrich ◽  
Franziska Bönte ◽  
...  

Genetics ◽  
1996 ◽  
Vol 144 (2) ◽  
pp. 495-510 ◽  
Author(s):  
B K Haarer ◽  
A Corbett ◽  
Y Kweon ◽  
A S Petzold ◽  
P Silver ◽  
...  

Abstract Replacement of the wild-type yeast profilin gene (PFY1) with a mutated form (pfy1-111) that has codon 72 changed to encode glutamate rather than arginine results in defects similar to, but less severe than, those that result from complete deletion of the profilin gene. We have used a colony color-sectoring assay to identify mutations that cause pfy1-111, but not wild-type, cells to be inviable. These profilin synthetic lethal (psl) mutations result in various degrees of abnormal growth, morphology, and temperature sensitivity in PFY1 cells. We have examined psl1 strains in the most detail. Interestingly, these strains display a diploid-specific defect in bud-site selection; haploid strains bud normally, while homozygous diploid strains show a dramatic increase in random budding. We discovered that PSL1 is the late secretory gene, SEC3, and have found that mutations in several other late secretory genes are also synthetically lethal with pfy1-111. Our results are likely to reflect an interdependence between the actin cytoskeleton and secretory processes in directing cell polarity and growth. Moreover, they indicate that the secretory pathway is especially crucial for maintaining budding polarity in diploids.


Sign in / Sign up

Export Citation Format

Share Document