scholarly journals Calcium-binding properties of human erythrocyte calpain

1997 ◽  
Vol 325 (3) ◽  
pp. 721-726 ◽  
Author(s):  
Mauro MICHETTI ◽  
Franca SALAMINO ◽  
Roberto MINAFRA ◽  
Edon MELLONI ◽  
Sandro PONTREMOLI

The results presented provide more information on the sequential mechanism that promotes the Ca2+-induced activation of human erythrocyte μ-calpain under physiological conditions. The primary event in this process corresponds to the binding of Ca2+ to eight interacting sites, of which there are four in each of the two calpain subunits. Progressive binding of this metal ion is linearly correlated with the dissociation of the proteinase, which reaches completion when all eight binding sites are occupied. The affinity for Ca2+ in the native heterodimeric calpain is increased 2-fold in the isolated 80 kDa catalytic subunit, but it reaches a Kd consistent with the physiological concentration of Ca2+ only in the active autoproteolytically derived 75 kDa form. Binding of Ca2+ in physiological conditions, and thus the formation of the 75 kDa subunit, can occur only in the presence of positive modulators. These are represented by the natural activator protein, found to be a Ca2+-binding protein, and by highly digestible substrates. The former produces a very large increase in the affinity of calpain for Ca2+, and the latter a smaller but still consistent decrease in the Kd of the proteinase for the metal ion. As a result, both dissociation into the constituent subunits and the autoproteolytic conversion of the native 80 kDa subunit into the active 75 kDa form can occur within the physiological fluctuations in Ca2+ concentration. The delay in the expression of the proteolytic activity with respect to Ca2+ binding to native calpain, no longer detectable in the 75 kDa form, can be attributed to a Ca2+-induced functional conformational change, which is correlated with the accessibility of the active site of the enzyme.

1980 ◽  
Vol 185 (1) ◽  
pp. 265-268 ◽  
Author(s):  
J Wikman-Coffelt

The non-specific Ca2+-binding sites of skeletal-muscle myosin are located on the light chains; with the dissociation of light chains there is a corresponding decrease in the number of Ca2+-binding sites on light-chain-deficient myosin. The released light chains have a decreased binding affinity. Myosin heavy chains indirectly influence the Ca2+-binding properties of light chains by increasing the affinity of light chains for bivalent cations; this influence varies with pH. Because of light-chain dissociation at low Ca2+ and/or Mg2+ concentrations, anomalies may exist when analyses of non-specific Ca2+-binding properties of myosin are assessed by dialysis equilibrium.


1998 ◽  
Vol 332 (3) ◽  
pp. 633-642 ◽  
Author(s):  
Alejandro TOVAR-MÉNDEZ ◽  
Rogelio RODRÍGUEZ-SOTRES ◽  
Dulce M. LÓPEZ-VALENTÍN ◽  
Rosario A. MUÑOZ-CLARES

To study the effects of phosphoenolpyruvate (PEP) and Mg2+ on the activity of the non-phosphorylated and phosphorylated forms of phosphoenolpyruvate carboxylase (PEPC) from Zea maysleaves, steady-state measurements have been carried out with the free forms of PEP (fPEP) and Mg2+ (fMg2+), both in a near-physiological concentration range. At pH 7.3, in the absence of activators, the initial velocity data obtained with both forms of the enzyme are consistent with the exclusive binding of MgPEP to the active site and of fPEP to an activating allosteric site. At pH 8.3, and in the presence of saturating concentrations of glucose 6-phosphate (Glc6P) or Gly, the free species also combined with the active site in the free enzyme, but with dissociation constants at least 35-fold that estimated for MgPEP. The latter dissociation constant was lowered to the same extent by saturating Glc6P and Gly, to approx. one-tenth and one-sixteenth in the non-phosphorylated and phosphorylated enzymes respectively. When Glc6P is present, fPEP binds to the active site in the free enzyme better than fMg2+, whereas the metal ion binds better in the presence of Gly. Saturation of the enzyme with Glc6P abolished the activation by fPEP, consistent with a common binding site, whereas saturation with Gly increased the affinity of the allosteric site for fPEP. Under all the conditions tested, our results suggest that fPEP is not able to combine with the allosteric site in the free enzyme, i.e. it cannot combine until after MgPEP, fPEP or fMg2+ are bound at the active site. The physiological role of Mg2+ in the regulation of the enzyme is only that of a substrate, mainly as part of the MgPEP complex. The kinetic properties of maize leaf PEPC reported here are consistent with the enzyme being well below saturation under the physiological concentrations of fMg2+ and PEP, particularly during the dark period; it is therefore suggested that the basal PEPC activity in vivois very low, but highly responsive to even small changes in the intracellular concentration of its substrate and effectors.


1998 ◽  
Vol 76 (2-3) ◽  
pp. 210-222 ◽  
Author(s):  
James M Aramini ◽  
Hans J Vogel

We present a summary of the quadrupolar metal ion NMR studies of metalloproteins conducted in our laboratory in recent years. The approaches we employ can be subdivided into two categories: (i) the use of low-frequency metal nuclei to probe metal ion binding sites in small proteins, exemplified by 43Ca NMR studies of alpha-lactalbumins and calcium-binding lysozymes, and (ii) the novel detection of the central transition of half-integer quadrupolar nuclei of moderate frequency bound to large metalloproteins, typified by 27Al, 45Sc, 69,71Ga, and 51V NMR studies of the transferrins. We highlight the chemical information regarding the nature of metal ion binding sites that can be obtained from this technique and emphasize the salient parameters that an investigator must consider to successfully apply quadrupolar NMR to the study of biological macromolecules.Key words: quadrupolar NMR, metalloproteins, transferrins.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5221
Author(s):  
Salvatore La Gatta ◽  
Linda Leone ◽  
Ornella Maglio ◽  
Maria De Fenza ◽  
Flavia Nastri ◽  
...  

Understanding the structural determinants for metal ion coordination in metalloproteins is a fundamental issue for designing metal binding sites with predetermined geometry and activity. In order to achieve this, we report in this paper the design, synthesis and metal binding properties of METP3, a homodimer made up of a small peptide, which self assembles in the presence of tetrahedrally coordinating metal ions. METP3 was obtained through a redesign approach, starting from the previously developed METP molecule. The undecapeptide sequence of METP, which dimerizes to house a Cys4 tetrahedral binding site, was redesigned in order to accommodate a Cys2His2 site. The binding properties of METP3 were determined toward different metal ions. Successful assembly of METP3 with Co(II), Zn(II) and Cd(II), in the expected 2:1 stoichiometry and tetrahedral geometry was proven by UV-visible spectroscopy. CD measurements on both the free and metal-bound forms revealed that the metal coordination drives the peptide chain to fold into a turned conformation. Finally, NMR data of the Zn(II)-METP3 complex, together with a retrostructural analysis of the Cys-X-X-His motif in metalloproteins, allowed us to define the model structure. All the results establish the suitability of the short METP sequence for accommodating tetrahedral metal binding sites, regardless of the first coordination ligands.


1980 ◽  
Vol 94 (1) ◽  
pp. 99-106 ◽  
Author(s):  
F. K. Habib ◽  
S. Q. Maddy ◽  
S. R. Stitch

Abstract. The binding of progesterone to plasma and endometrial cytosol is markedly influenced by Zn++, the degree and magnitude of this influence being dependent on the concentration of the metal ion. There is a critical protein concentration (approximately 10 mg/ml) beyond which the zinc exerts either a stimulatory or inhibitory effect. Maximum increases in binding of over 60% were attained in solutions of plasma containing 30 mg of protein whereas increases of 10% were measured in cytosol specimens with 10 mg protein/ml. This metal mediated effect was however progressively diminished with increasing zinc concentration resulting finally in the return of the binding to the levels observed in the absence of added Zn++. The zinc induced inhibition was most evident in plasma and cytosol with a protein concentration less than 10 mg/ml. The magnitude of this effect was inversely proportional to the levels of protein in solution. Scatchard analysis of the the data revealed that the number of progesterone bindings sites in the receptor are affected by the presence of the metal while the association constants remained unchanged. The study also suggests that the zinc induced changes are partially reversed by dithiothreitol and EDTA. We believe that the metal interferes directly with the SH groups at the receptor binding sites.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Hongyu Song ◽  
Xue He ◽  
Xiaodi Du ◽  
Ruiqi Hua ◽  
Jing Xu ◽  
...  

Abstract Background Cystic echinococcosis is a parasitic zoonotic disease, which poses a threat to public health and animal husbandry, and causes significant economic losses. Annexins are a family of phospholipid-binding proteins with calcium ion-binding activity, which have many functions. Methods Two annexin protein family genes [Echinococcus granulosus annexin B3 (EgAnxB3) and EgAnxB38] were cloned and molecularly characterized using bioinformatic analysis. The immunoreactivity of recombinant EgAnxB3 (rEgAnxB3) and rEgAnxB38 was investigated using western blotting. The distribution of EgAnxB3 and EgAnxB38 in protoscoleces (PSCs), the germinal layer, 18-day strobilated worms and 45-day adult worms was analyzed by immunofluorescence localization, and their secretory characteristics were analyzed preliminarily; in addition, quantitative real-time reverse transcription polymerase chain reaction was used to analyze their transcript levels in PSCs and 28-day strobilated worms stages. The phospholipid-binding activities of rEgAnxB3 and rEgAnxB38 were also analyzed. Results EgAnxB3 and EgAnxB38 are conserved and contain calcium-binding sites. Both rEgAnxB3 and rEgAnxB38 could be specifically recognized by the serum samples from E. granulosus-infected sheep, indicating that they had strong immunoreactivity. EgAnxB3 and EgAnxB38 were distributed in all stages of E. granulosus, and their transcript levels were high in the 28-day strobilated worms. They were found in liver tissues near the cysts. In addition, rEgAnxB3 has Ca2+-dependent phospholipid-binding properties. Conclusions EgAnxB3 and EgAnxB38 contain calcium-binding sites, and rEgAnxB3 has Ca2+-dependent phospholipid-binding properties. EgAnxB3 and EgAnxB38 were transcribed in PSCs and 28-day strobilated worms. They were expressed in all stages of E. granulosus, and distributed in the liver tissues near the hydatid cyst, indicating that they are secreted proteins that play a crucial role in the development of E. granulosus.


1988 ◽  
Vol 42 (2) ◽  
pp. 293-295 ◽  
Author(s):  
E. K. L. Wong ◽  
G. L. Richmond

The metal ion binding properties of the perfluorosulfonate membrane Nafion® have been investigated in this study. The experiments involve laser-induced fluorescence measurements of europium (III) ions which are bound to the membrane. By the exploitation of the hypersensitivity of the D → F transitions of europium (III) to the ligand binding environment, the properties of the metal binding sites have been analyzed as a function of various experimental parameters. The spectra and fluorescence lifetime measurements provide evidence for distinct metal binding sites within the polymer, each of which is sensitive to the conditions of the membrane preparation.


Sign in / Sign up

Export Citation Format

Share Document