scholarly journals Role of Cell Death in Toxicology: Does It Matter How Cells Die?

Author(s):  
Sten Orrenius

My research activity started with studies on drug metabolism in rat liver microsomes in the early 1960s. The CO-binding pigment (cytochrome P450) had been discovered a few years earlier and was subsequently found to be involved in steroid hydroxylation in adrenal cortex microsomes. Our early studies suggested that it also participated in the oxidative demethylation of drugs catalyzed by liver microsomes, and that prior treatment of the animals with phenobarbital caused increased levels of the hemoprotein in the liver, and similarly enhanced rates of drug metabolism. Subsequent studies of cytochrome P450-mediated metabolism of toxic drugs in freshly isolated rat hepatocytes characterized critical cellular defense systems and identified mechanisms by which accumulating toxic metabolites could damage and kill the cells. These studies revealed that multiple types of cell death could result from the toxic injury, and that it is important to know which type of cell death results from the toxic injury.

1982 ◽  
Vol 208 (2) ◽  
pp. 453-457 ◽  
Author(s):  
S Alemany ◽  
I Varela ◽  
J M Mato

The addition of 1 microM-vasopressin or -angiotensin to isolated rat hepatocytes induced a fast transient inhibition of the rate of incorporation of [Me-3H]choline into phosphatidylcholine. The cationophore A23187 induced a similar inhibition of phosphatidylcholine synthesis. The addition of micromolar Ca2+ to rat liver microsomes inhibited the activity of CDP-choline: 1,2-diacylglycerol cholinephosphotransferase. This inhibition is due a decrease in the Vmax. of the enzyme without affecting the Km for CDP-choline. It is concluded that Ca2+ regulates phosphatidylcholine synthesis in rat liver.


1997 ◽  
Vol 328 (2) ◽  
pp. 463-471 ◽  
Author(s):  
C. Kekulu FERNANDO ◽  
B. Roland GREGORY ◽  
Frosa KATSIS ◽  
E. Bruce KEMP ◽  
J. Greg BARRITT

The roles of a monomeric GTP-binding regulatory protein in the activation of store-activated plasma membrane Ca2+ channels and in the release of Ca2+ from the smooth endoplasmic reticulum (SER) in rat liver parenchymal cells were investigated with the use of freshly isolated rat hepatocytes and rat liver microsomes. A low concentration (approx. 130 μM intracellular) of guanosine 5ʹ-[γ-thio]triphosphate (GTP[S]) activated Ca2+ inflow in intact hepatocytes in the absence of an agonist, whereas a high concentration (approx. 530 μM intracellular) of GTP[S] or guanosine 5ʹ-[βγ-imido]triphosphate (p[NH]ppG) inhibited the Ca2+ inflow induced by inhibitors of the activity of the endoplasmic-reticulum Ca2+-ATPase (SERCA) and by vasopressin. GTP (530 μM) prevented the inhibition of Ca2+ inflow by GTP[S] and p[NH]ppG. Brefeldin A and the peptide human Arf-1-(2-17), which inhibit many functions of ADP ribosylation factor (Arf) proteins, inhibited the Ca2+ inflow induced by SERCA inhibitors and vasopressin, and altered the profile of Ca2+ release from the SER. These effects were observed at concentrations of Brefeldin A and Arf-1-(2-17) comparable with those that inhibit the functions of Arf proteins in other systems. Succinylated Arf-1-(2-17) had a negligible effect on Ca2+ inflow. GTP[S] and Arf-1-(2-17) completely inhibited the synergistic action of GTP and Ins(1,4,5)P3 in releasing 45Ca2+ from rat liver microsomes loaded with 45Ca2+. AlF4- (under conditions expected to activate trimeric G-proteins) and succinylated Arf-1-(2-17) had no effect on GTP/Ins(1,4,5)P3-induced 45Ca2+ release, and a mastoparan analogue caused partial inhibition. Arf-1-(2-17) did not inhibit 45Ca2+ release induced by either thapsigargin or ionomycin. It is concluded that a low-molecular-mass G-protein, most probably a member of the Arf protein family, is required for store-activated Ca2+ inflow in rat hepatocytes. The idea that the role of this G-protein is to maintain a region of the SER in the correct intracellular location is discussed briefly.


1998 ◽  
Vol 39 (6) ◽  
pp. 1210-1219 ◽  
Author(s):  
Fadi Adas ◽  
François Berthou ◽  
Daniel Picart ◽  
Patrick Lozac'h ◽  
Françoise Beaugé ◽  
...  

1989 ◽  
Vol 263 (2) ◽  
pp. 347-353 ◽  
Author(s):  
J F Nagelkerke ◽  
P Dogterom ◽  
H J G M De Bont ◽  
G J Mulder

Isolated rat hepatocytes were incubated with ATP to induce high intracellular free Ca2+ concentrations as determined with the Quin-2 method. Immediately after addition of ATP, the intracellular concentration of Ca2+ rose from 200 nM to more than 2.5 microM. It stayed at this value during the first 1/2 h; the rise was absolutely dependent on extracellular Ca2+. After the first 1/2 h the Ca2+ concentration decreased to 1-2 microM (5-10 times the control value). These high intracellular free Ca2+ concentrations did not lead to an immediate loss of cell viability. Only after 2 h of incubation a substantial number of cells lost viability. This was preceded by a decrease in cellular NADH (greater than 40%) and accompanied by a sharp increase in the intracellular Ca2+ concentration. Under these conditions the NADPH concentration was not affected. Cellular GSH was decreased to 30% of the initial value, but no lipid peroxidation or protein-thiol depletion was observed. Intracellular ATP, ADP and AMP were increased in the presence of extracellular ATP. Ca2+-dependent proteases seemed not to be involved in cell death. These observations are consistent with a collapse of mitochondrial functions as a final trigger of cell death.


Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 932
Author(s):  
Hassan Salhab ◽  
Declan P. Naughton ◽  
James Barker

Inhibition of cytochrome P450 (CYP) alters the pharmacokinetic parameters of the drug and causes drug–drug interactions. Salicylic acid been used for the treatment of colorectal cancer (CRC) and chemoprevention in recent decades. Thus, the aim of this study was to examine the in vitro inhibitory effect of salicylic acid on CYP2E1 activity in rat liver microsomes (RLMs) using high-performance liquid chromatography (HPLC). High-performance liquid chromatography analysis of a CYP2E1 assay was developed on a reversed phase C18 column (SUPELCO 25 cm × 4.6 mm × 5 µm) at 282 nm using 60% H2O, 25% acetonitrile, and 15% methanol as mobile phase. The CYP2E1 assay showed a good linearity (R2 > 0.999), good reproducibility, intra- and inter-day precision (<15%), acceptable recovery and accuracy (80–120%), and low detection (4.972 µM and 1.997 µM) and quantitation limit values (15.068 µM and 6.052 µM), for chlorzoxazone and 6-hydroxychlorzoxazone, respectively. Salicylic acid acts as a mixed inhibitor (competitive and non-competitive inhibition), with Ki (inhibition constant) = 83.56 ± 2.730 µM and concentration of inhibitor causing 50% inhibition of original enzyme activity (IC50) exceeding 100 µM (IC50 = 167.12 ± 5.460 µM) for CYP2E1 enzyme activity. Salicylic acid in rats would have both low and high potential to cause toxicity and drug interactions with other drugs that are substrates for CYP2E1.


1992 ◽  
Vol 288 (1) ◽  
pp. 207-213 ◽  
Author(s):  
J P Zoeteweij ◽  
B van de Water ◽  
H J de Bont ◽  
G J Mulder ◽  
J F Nagelkerke

Isolated rat hepatocytes were incubated with extracellular ATP to induce a prolonged increase in intracellular Ca2+ ([Ca2+]i) and a loss of viability within 2 h. By using video-intensified fluorescence microscopy, the effects of exposure to extracellular ATP on [Ca2+]i, mitochondrial membrane potential (MMP) and cell viability were determined simultaneously in individual living hepatocytes. The increase in [Ca2+]i on exposure to ATP was followed by a decreasing MMP; there were big differences between individual cells. Complete loss of the MMP occurred before cell death was observed. Omission of K+ from the incubation medium decreased the cytotoxicity of ATP; under these conditions, intracellular K+ was decreased by more than 80%. Treatment with nigericin also depleted intracellular K+ and decreased ATP-induced toxicity. Protection against loss of viability by means of a decrease in intracellular [K+] was reflected by maintenance of the MMP. These observations suggest that ATP-induced cell death may be caused by a mechanism that has been described for isolated mitochondria: after an increase in Ca2+ levels, a K+ influx into mitochondria is induced, which finally disrupts the MMP and leads to cell death.


1985 ◽  
Vol 34 (3) ◽  
pp. 331-336 ◽  
Author(s):  
George W. Mihaly ◽  
Stephen A. Ward ◽  
Deborah D. Nicholl ◽  
Geoffrey Edwards ◽  
Alasdair M. Breckenridge

Sign in / Sign up

Export Citation Format

Share Document