scholarly journals Structural model for the organization of the transmembrane spans of the human red-cell anion exchanger (band 3; AE1)

1999 ◽  
Vol 344 (3) ◽  
pp. 699-711 ◽  
Author(s):  
Jonathan D. GROVES ◽  
Michael J. A. TANNER

We have examined the functional co-assembly of non-complementary pairs of N- and C-terminal polypeptide fragments of the anion transport domain (b3mem) of human red-cell band 3. cDNA clones encoding non-contiguous pairs of fragments with one transmembrane (TM) region omitted, or overlapping pairs of fragments with between one and ten TM regions duplicated, were co-expressed in Xenopus oocytes and a cell-free translation system. Stilbene disulphonate-sensitive chloride uptake assays in oocytes revealed that the omission of any single TM region of b3mem except spans 6 and 7 caused a complete loss of functional expression. In contrast, co-expressed pairs of fragments overlapping a single TM region 5, 6, 7, 8, 9-10 or 11-12 retained a high level of functionality, whereas fragments overlapping the clusters of TM regions 2-5, 4-5, 5-8 and 8-10 also mediated some stilbene disulphonate-sensitive uptake. The co-assembly of N- or C-terminal fragments with intact band 3, b3mem or other fragments was examined by co-immunoprecipitation in non-denaturing detergent solutions by using monoclonal antibodies against the termini of b3mem. All the fragments, except for TM spans 13-14, co-immunoprecipitated with b3mem. The medium-sized N-terminal fragments comprising spans 1-6, 1-7 or 1-8 co-immunoprecipitated particularly strongly with the C-terminal fragments containing spans 8-14 or 9-14. The fragments comprising spans 1-4 or 1-12 co-immunoprecipitated less extensively than the other N-terminal fragments with either b3mem or C-terminal fragments. There is sufficient flexibility in the structure of b3mem to allow the inclusion of at least one duplicated TM span without a loss of function. We propose a working model for the organization of TM spans of dimeric band 3 based on current evidence.

1998 ◽  
Vol 332 (1) ◽  
pp. 161-171 ◽  
Author(s):  
Jonathan D. GROVES ◽  
Lin WANG ◽  
Michael J. A. TANNER

We examined the assembly of the membrane domain of the human red cell anion transporter (band 3; AE1) by co-expression of recombinant N- and C-terminal fragments in Xenopus oocytes and in cell-free translation with canine pancreatic microsomes. Co-immunoprecipitation was performed in non-denaturing detergent solutions using antibodies directed against the N- and C-termini of the membrane domain. Eleven of the twelve fragments were expressed stably in oocytes in the presence or absence of their respective partners. However, the fragment containing from putative span nine to the C-terminus could be detected in oocytes only when co-expressed with its complementary partner containing the first eight spans. Co-expression of pairs of fragments divided in the first, second, third and fourth exofacial loops and in the fourth cytoplasmic loop resulted in a concentration-dependent association, but a pair of fragments divided in the sixth cytoplasmic loop did not co-immunoprecipitate. When two complementary fragments were translated separately in the cell-free system and the purified microsomes were then mixed, co-immunoprecipitation was observed only if the membranes were first fused using polyethylene glycol. This shows that co-immunoprecipitation results from specific interactions within the membrane and is not an artefact of detergent solubilization or immunoprecipitation. We demonstrate that band 3 assembly can occur within the membrane after translation, insertion and initial folding of the individual fragments have been completed. We conclude that most band 3 fragments contain the necessary information to fold in the membrane and adopt a structure that is sufficiently similar to the native protein that it permits correct assembly with its complementary partner.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2040-2040
Author(s):  
Connie M Westhoff ◽  
Seth Alper

Abstract Abstract 2040 The erythroid Rh family of proteins includes RhCE and RhD which carry the common Rh antigens, and the related Rh-associated glycoprotein, RhAG. RhAG is required for trafficking of the blood group proteins to the membrane and forms the core of a macro-complex in the membrane which includes glycophorin B, Band 3, CD47, and LW. The Rh proteins are structurally and functionally related to the Amt superfamily of NH3/NH4+ transport proteins, and RhAG and its nonerythroid paralogs, RhCG and RhBG, have been shown to mediate NH3/NH4+ transport. RhCG is responsible for part of renal collecting duct epithelial cell NH3/NH4+ secretion, and Rhcg-/- mice exhibit incomplete distal renal tubular acidosis due to impaired urinary NH4+ excretion. The Rhag-/- mouse is grossly normal, and the significance of RhAG-mediated NH3/NH4+ transport in human erythrocytes remains unclear. Over-hydrated hereditary stomatocytosis (OHSt) is a rare dominant disorder characterized by moderate hemolytic anemia, increased mean red cell volumes, stomatocytes and echinocytes, and increased red cell permeability to the monovalent cations, Na+ and K+. Six of the seven OHSt kindred studied by Bruce et al. (Blood. 2009;113:1350) displayed a heterozygous Phe65Ser mutation in RhAG. Expression studies of the mutant 65Ser-RhAG in Xenopus oocytes induced a monovalent cation flux compatible with the cation leak seen in RBCs. The increased Na+ and decreased K+ contents of mutant RhAG-expressing oocytes suggested that F65S is a gain-of-function mutation that opens a cation leak, likely within the RhAG polypeptide. In this study the ammonia transport properties of the OHSt mutant 65Ser-RhAG were investigated. Xenopus oocytes were injected with cRNA encoding wild-type RhAG, the OHSt mutant 65Ser-RhAG, and 65Val-RhAG, an engineered mutation with a smaller hydrophobic side chain at position 65. Wild-type and mutant RhAG polypeptides were well-expressed in the oocyte membrane as measured by quantitative immunoblotting. Uptake of the NH3/NH4+ substrate analog 14C-methylammonium (MA), was assayed in oocytes previously injected with water (control) or with cRNA. Expression of wild-type RhAG mediated MA uptake at rates 6-fold greater than that of water-injected controls. Uptake of MA by oocytes expressing 65Val-RhAG was equivalent to that of wild type RhAG. However, MA uptake by oocytes expressing OHSt mutant 65Ser-RhAG was greatly reduced to less than 20% that of oocytes expressing wild-type RHAG or 65Val-RhAG, and was only 1.5-fold greater than that of water-injected control oocytes. Co-expression with other, individual Rh complex members glycophorin B, RhD, RhCE, or Band 3 did not alter MA-mediated uptake by RhAG-expressing oocytes. Importantly, this study reveals that the RhAG mutation Phe65Ser found in patients with type 1 over-hydrated stomatocytosis is a loss of function mutation. Further study is required to define the relationship between loss of NH3/NH4+ transport and erythrocyte Na+ and K+ cation content. Disclosures: Westhoff: Immucor: Scientific Advisor.


1998 ◽  
Vol 330 (2) ◽  
pp. 909-914 ◽  
Author(s):  
D. Lucille BURTON ◽  
G. Andree KIPPENBERGER ◽  
Bettina LINGEN ◽  
Michael BRÜSS ◽  
Heinz BÖNISCH ◽  
...  

We have characterized a cDNA clone which encodes a variant (bNAT2) of the bovine noradrenaline transporter. This cDNA differs from the previously identified bovine noradrenaline transporter (bNAT1) in the sequence encoding part of the cytoplasmic-facing C-terminus and the 3ʹ-untranslated region. The bNAT1 and bNAT2 cDNA clones are encoded by a 5.8 and 3.6 kb mRNA species respectively. The bNAT1 and bNAT2 proteins, which are identical apart from their C-terminal 31 and 18 residues, were stably expressed in HEK293 cells. Cells expressing bNAT1 showed a high level of desipramine-sensitive [3H]noradrenaline uptake activity, whereas no activity was present in bNAT2 cells. The bNAT1 and bNAT2 proteins were present as major 80 and 50 kDa species respectively. Cells expressing bNAT1 showed strong immunostaining of the plasma membrane, whereas bNAT2 was present in the endoplasmic reticulum/Golgi region. Treatment of membrane samples from bNAT1 cells with peptide N-glycosidase F resulted in the formation of a predominantly 50 kDa species, but little effect was observed after similar treatment of bNAT2 cell membranes. These results indicate that bNAT2 is retained in the endoplasmic reticulum and that the glycosylation of this variant differs from that of bNAT1. The characterization of bNAT2 and its comparison with bNAT1 highlight the importance of the cytoplasmic-facing C-terminus for the intracellular trafficking of neurotransmitter transporters.


1999 ◽  
Vol 344 (3) ◽  
pp. 687-697 ◽  
Author(s):  
Jonathan D. GROVES ◽  
Michael J. A. TANNER

The red-cell anion exchanger (band 3; AE1) is a multispanning membrane protein that traverses the bilayer up to 14 times and is N-glycosylated at Asn-642. We have shown that the integrity of six different loops are not essential for stilbene disulphonate-sensitive chloride uptake in Xenopus oocytes. We used an N-glycosylation mutagenesis approach to examine the orientation of the N-terminus and the endogenous glycosylation site of each C-terminal fragment by cell-free translation. The fragments initiating in the loops preceding spans 2, 9 and 11 did not insert into the membrane with the expected orientation. Furthermore, N-glycosylation of Asn-642 might facilitate the membrane integration of span 7. The correct integration of spans 2-3 required the presence of the region containing span 4 and that the luminal exposure of the C-terminus of span 7 is increased in the presence of the region including span 6 or span 8. The results suggest the span 8 region is required for the correct folding of spans 9-10, at least in the presence of the span 11-12 region. Our results suggest that there are intramolecular interactions between the regions of transmembrane spans 1 and 2, 2 and 4, 4 and 5, 7 and 8, 8 and 9-10, and 9-10 and 11-12. Spans 1, 4, 5, 6 and 8 might act as a scaffold for the assembly of spans 2-3, 7 and 9-10. This approach might provide a general method for dissecting the interactions between membrane-spanning regions of polytopic membrane proteins.


2018 ◽  
Vol 150 (8) ◽  
pp. 1189-1201 ◽  
Author(s):  
Xue Bai ◽  
Kai Li ◽  
Li Yao ◽  
Xin-Lei Kang ◽  
Shi-Qing Cai

The human ether-a-go-go–related gene (hERG) encodes a voltage-gated potassium channel that controls repolarization of cardiac action potentials. Accumulating evidence suggests that most disease-related hERG mutations reduce the function of the channel by disrupting protein biogenesis of the channel in the endoplasmic reticulum (ER). However, the molecular mechanism underlying the biogenesis of ERG K+ channels is largely unknown. By forward genetic screening, we identified an ER-located chaperone CNX-1, the worm homologue of mammalian chaperone Calnexin, as a critical regulator for the protein biogenesis of UNC-103, the ERG-type K+ channel in Caenorhabditis elegans. Loss-of-function mutations of cnx-1 decreased the protein level and current density of the UNC-103 K+ channel and suppressed the behavioral defects caused by a gain-of-function mutation in unc-103. Moreover, CNX-1 facilitated tetrameric assembly of UNC-103 channel subunits in a liposome-assisted cell-free translation system. Further studies showed that CNX-1 act in parallel to DNJ-1, another ER-located chaperone known to regulate maturation of UNC-103 channels, on controlling the protein biogenesis of UNC-103. Importantly, Calnexin interacted with hERG proteins in the ER in HEK293T cells. Deletion of calnexin reduced the expression and current densities of endogenous hERG K+ channels in SH-SY5Y cells. Collectively, we reveal an evolutionarily conserved chaperone CNX-1/Calnexin controlling the biogenesis of ERG-type K+ channels.


1999 ◽  
Vol 339 (2) ◽  
pp. 269-279 ◽  
Author(s):  
Milka POPOV ◽  
Jing LI ◽  
Reinhart A. F. REITHMEIER

The human erythrocyte anion exchanger (AE1, Band 3) contains up to 14 transmembrane segments, with a single site of N-glycosylation at Asn642 in extracellular (EC) loop 4. Scanning and insertional N-glycosylation mutagenesis were used to determine the folding pattern of AE1 in the membrane. Full-length AE1, when expressed in transfected human embryonic kidney (HEK)-293 or COS-7 cells, retained a high-mannose oligosaccharide structure. Scanning N-glycosylation mutagenesis of EC loop 4 showed that N-glycosylation acceptor sites (Asn-Xaa-Ser/Thr) spaced 12 residues from the ends of adjacent transmembrane segments could be N-glycosylated. An acceptor site introduced at position 743 in intracellular (IC) loop 5 that could be N-glycosylated in a cell-free translation system was not N-glycosylated in transfected cells. Mutations designed to disrupt the folding of this loop enhanced the level of N-glycosylation at Asn743in vitro. The results suggest that this loop might be transiently exposed to the lumen of the endoplasmic reticulum during biosynthesis but normally folds rapidly, precluding N-glycosylation. EC loop 4 insertions into positions 428, 484, 754 and 854 in EC loops 1, 2, 6 and 7 respectively were efficiently N-glycosylated, showing that these regions were extracellular. EC loop 4 insertions into positions 731 or 785 were poorly N-glycosylated, which was inconsistent with an extracellular disposition for these regions of AE1. Insertion of EC loop 4 into positions 599 and 820 in IC loops 3 and 6 respectively were not N-glycosylated in cells, which was consistent with a cytosolic disposition for these loops. Inhibitor-affinity chromatography with 4-acetamido-4´-isothiocyanostilbene-2,2´-disulphonate (SITS)-Affi-Gel was used to assess whether the AE1 mutants were in a native state. Mutants with insertions at positions 428, 484, 599, 731 and 785 showed impaired inhibitor binding, whereas insertions at positions 754, 820 and 854 retained binding. The results indicate that the folding of the C-terminal region of AE1 is more complex than originally proposed and that this region of the transporter might have a dynamic aspect.


2006 ◽  
Vol 82 (6) ◽  
pp. 1595
Author(s):  
Stephen J. Wagner ◽  
Andrey Skripchenko ◽  
Dedeene Thompson-Montgomery ◽  
Helen Awatefe ◽  
David J. Donnelly ◽  
...  

2002 ◽  
Vol 5 (6) ◽  
pp. 473-480
Author(s):  
Bentham Science Publisher A.N. Alexandrov ◽  
Bentham Science Publisher V.Yu. Alakhov ◽  
Bentham Science Publisher A.I. Miroshnikov

Sign in / Sign up

Export Citation Format

Share Document