Characterization of the reaction mechanism for the XL-I form of bovine liver xenobiotic/medium-chain fatty acid:CoA ligase

2001 ◽  
Vol 357 (1) ◽  
pp. 283-288 ◽  
Author(s):  
Donald A. VESSEY ◽  
Michael KELLEY

The XL-I form of xenobiotic/medium-chain fatty acid:CoA ligase was purified to apparent homogeneity from bovine liver mitochondria and used to determine the reaction mechanism. A tersubstrate kinetic analysis was conducted by varying the concentrations of ATP, benzoate and CoA in turn. Both ATP and benzoate gave parallel double-reciprocal plots against CoA, which indicates a Ping Pong mechanism, with either pyrophosphate or AMP leaving before the binding of CoA. Addition of pyrophosphate to the assays changed the plots from parallel to intersecting; addition of AMP did not. This indicates that pyrophosphate is the product that leaves before binding of CoA. Based on end-product inhibition studies, it was concluded that the reaction follows a Bi Uni Uni Bi Ping Pong mechanism, with ATP binding first, followed in order by benzoate binding, pyrophosphate release, CoA binding, benzoyl-CoA release and AMP release. A similar mechanism was obtained when the ligase was examined with butyrate as substrate. However, butyrate activation was characterized by a much higher affinity for CoA. This is attributed to steric factors resulting from the bulkier nature of the benzoate molecule. Also, with butyrate there is a bivalent cation activation distinct from that associated with binding to ATP. This activation by excess Mg2+ results in non-linear plots of 1/v against 1/[ATP] for butyrate unless the concentrations of Mg2+ and ATP are varied together.

1969 ◽  
Vol 47 (2) ◽  
pp. 111-115 ◽  
Author(s):  
R. O. Hurst

An enzymic reaction mechanism characterized as 'di-Uni Iso Ping Pong' which has the same product inhibition pattern as the 'Ping Pong Bi Bi' mechanism but a different order for the release of products is discussed. A basis for differentiating the two mechanisms by dead-end inhibition studies is given.


1974 ◽  
Vol 141 (3) ◽  
pp. 817-824 ◽  
Author(s):  
Keith R. F. Elliott ◽  
Keith F. Tipton

A study of the product-inhibition patterns of carbamoyl phosphate synthetase from bovine liver is reported. Inhibition by adenosine, AMP and inorganic ions is also reported. The results are in agreement with the previously proposed model in which the order of substrate binding is ATPMg, followed by HCO3−, ATPMg and NH4+. The order of product release on the basis of the reported results is carbamoyl phosphate, followed by ADPMg, ADPMg and inorganic phosphate.


1991 ◽  
Vol 275 (2) ◽  
pp. 327-334 ◽  
Author(s):  
C Montero ◽  
P Llorente

Adenine phosphoribosyltransferase (APRTase) and hypoxanthine-guanine phosphoribosyltransferase (HGPRTase) have been purified from Artemia cysts and nauplii to apparent homogeneity, as determined by SDS-PAGE. The purification includes affinity chromatography on AMP-Sepharose, which binds both enzymes, and they are eluted at different 5-phospho-alpha-D-ribosyl diphosphate (PP-Rib-P) concentrations. The purified enzymes from Artemia cysts were similar to nauplii enzymes with respect to Mr in denaturing gel electrophoresis and gel filtration, pH and cation dependence and kinetic constants for substrates and inhibitors. By Sephadex G-100 filtration, the native Mr of the adenine and hypoxanthine-guanine enzymes was estimated to be Mr 28,000 and 66,000, respectively. Analysis by SDS-PAGE revealed that the APRTase was a dimer of Mr 15,000 sub-units and the HGPRTase, a tetramer of four identical Mr 19,000 sub-units. The pH profile of the HGPRTase shows two apparent buffer-independent pH optima, at 7.0 and 9.5, while the APRTase has just one, at about pH 8-9. The purine phosphoribosyltransferase activity with adenine was highest, about tenfold the HGPRTase activity with hypoxanthine and fivefold that with guanine. Both enzymes exhibited similar requirements for divalent cations, either Mg2+, Mn2+ or Zn2+, while Ca2+ is highly inhibitory. The Km values of APRTase for adenine and PP-Rib-P are 2 and 30 microM, respectively, and the Km values of HGPRTase for hypoxanthine, guanine and PP-Rib-P are less than 1, less than 1 and 15 microM, respectively. Plots of the reciprocal enzyme activities versus reciprocal concentrations of one substrate at several fixed levels of the second one yield a pattern of inhibition by guanine and hypoxanthine. Product-inhibition studies indicated that AMP is a competitive inhibitor with respect to PP-Rib-P in the APRTase reaction, while the HGPRTase shows a mixed inhibition by GMP.


1994 ◽  
Vol 301 (1) ◽  
pp. 97-103 ◽  
Author(s):  
C E French ◽  
N C Bruce

The NADH-dependent morphinone reductase from Pseudomonas putida M10 catalyses the reduction of morphinone and codeinone to hydromorphone and hydrocodone respectively. Morphinone reductase was purified from crude cell extracts to apparent homogeneity in a single affinity-chromatography step using Mimetic Yellow 2. The purified enzyme was a dimeric flavoprotein with two identical subunits of M(r) 41,100, binding non-covalently one molecule of FMN per subunit. The N-terminal sequence was PDTSFSNPGLFTPLQ. Morphinone reductase was active against morphinone, codeinone, neopinone and 2-cyclohexen-1-one, but not against morphine, codeine or isocodeine. The apparent Km values for codeinone and 2-cyclohexen-1-one were 0.26 mM and 5.5 mM respectively. The steroids progesterone and cortisone were potent competitive inhibitors; the apparent K1 for cortisone was 35 microM. The pH optimum for codeinone reduction was 8.0 in phosphate buffer. No reverse reaction could be detected, and NADPH could not be used as a reducing substrate in place of NADH. Morphinone reductase activity was strongly inhibited by 0.01 mM CuSO4 and p-hydroxymercuribenzoate, suggesting the presence of a vital thiol group. Steady-state kinetic studies suggested a Ping Pong (substituted enzyme) kinetic mechanism; however, product-inhibition patterns were inconsistent with a classical Ping Pong mechanism. Morphinone reductase may, like several other flavoprotein dehydrogenases, operate by a hybrid two-site Ping Pong mechanism.


1969 ◽  
Vol 111 (3) ◽  
pp. 257-262 ◽  
Author(s):  
A. B. Graham ◽  
M. V. Park

By a study of the product-inhibition kinetics of the octanoyl-CoA synthetase from ox liver mitochondria, evidence was obtained consistent with the hypothesis that the enzyme reacts by a Bi Uni Uni Bi Ping Pong type of mechanism in which the order of addition and evolution of substrates and products is CoA, octanoate, octanoyl-CoA, ATP, PPi and AMP. There is also evidence that more than one molecule of CoA can add to the enzyme and that it may act as an allosteric activator.


1976 ◽  
Vol 157 (1) ◽  
pp. 197-205 ◽  
Author(s):  
D F Brook ◽  
P J Large

1. Secondary-amine mono-oxygenase (proposed EC group 1.14.99.-) was partially purified from trimethylamine-grown Pseudomonas aminovorans by (NH4)2SO4 fractionation, gel filtration, hydrophobic chromatography on 5-aminopentylamino-Sepharose, and affinity chromatography on Sepharose-bound NADH. 2. Some problems in the affinity-chromatography step are discussed. 3. A steady-state kinetic analysis varying substrate, oxygen and electron-donor concentrations was performed, which, over the concentration range studied, gave a series of families of approximately parallel double-reciprocal plots. From secondary and tertiary plots, Michaelis constants of 0.160 mM, 0.086 mM and 0.121 mM were obtained for dimethylamine, NADPH and oxygen respectively. 4. Product-inhibition studies supported the postulated Hexa Uni Ping Pong (triple-transfer) reaction mechanism.


Sign in / Sign up

Export Citation Format

Share Document