Green fluorescent protein (GFP) tagged to the cytoplasmic tail of αIIb or β3 allows the expression of a fully functional integrin αIIbβ3: effect of β3GFP on αIIbβ3 ligand binding

2001 ◽  
Vol 357 (2) ◽  
pp. 529-536 ◽  
Author(s):  
Sébastien PLANÇON ◽  
Marie-Christine MOREL-KOPP ◽  
Elisabeth SCHAFFNER-RECKINGER ◽  
Ping CHEN ◽  
Nelly KIEFFER

Using green fluorescent protein (GFP) as an autofluorescent tag, we report the first successful visualization of a β3 integrin in a living cell. GFP fused in frame to the cytoplasmic tail of either αIIb or β3 allowed normal expression, heterodimerization, processing and surface exposure of αIIbGFPβ3 and αIIbβ3GFP receptors in Chinese hamster ovary (CHO) cells. Direct microscopic observation of the autofluorescent cells in suspension following antibody-induced αIIbβ3 capping revealed an intense autofluorescent cap corresponding to unlabelled immunoclustered GFP-tagged αIIbβ3. GFP-tagged αIIbβ3 receptors mediated fibrinogen-dependent cell adhesion, were readily detectable in focal adhesions of unstained living cells and triggered p125FAK tyrosine phosphorylation similar to wild-type αIIbβ3 (where FAK corresponds to focal adhesion kinase). However, GFP tagged to β3, but not to αIIb, induced spontaneous CHO cell aggregation in the presence of soluble fibrinogen, as well as binding of the fibrinogen mimetic monoclonal antibody PAC1 in the absence of αIIbβ3 receptor activation. Time-lapse imaging of living transfectants revealed a characteristic redistribution of GFP-tagged αIIbβ3 during the early stages of cell attachment and spreading, starting with αIIbβ3 clustering at the rim of the cell contact area, that gradually overlapped with the boundary of the attached cell, and, with the onset of cell spreading, to a reorganization of αIIbβ3 in focal adhesions. Taken together, our results demonstrate that (1) fusion of GFP to the cytoplasmic tail of either αIIb or β3 integrin subunits allows normal cell surface expression of a functional receptor, and (2) structural modification of the β3 integrin cytoplasmic tail, rather than the αIIb subunit, plays a major role in αIIbβ3 affinity modulation. With the successful direct visualization of functional αIIbβ3 receptors in living cells, the generation of autofluorescent integrins in transgenic animals will become possible, allowing new approaches to study the dynamics of integrin functions.

2002 ◽  
Vol 13 (9) ◽  
pp. 3203-3217 ◽  
Author(s):  
Karen A. Pinco ◽  
Wei He ◽  
Joy T. Yang

α4β1 integrin plays an important role in cell migration. We show that when ectopically expressed in Chinese hamster ovary cells, α4β1 is sufficient and required for promoting protrusion of broad lamellipodia in response to scratch-wounding, whereas α5β1 does not have this effect. By time-lapse microscopy of cells expressing an α4/green fluorescent protein fusion protein, we show that α4β1 forms transient puncta at the leading edge of cells that begin to protrude lamellipodia in response to scratch-wounding. The cells expressing a mutant α4/green fluorescent protein that binds paxillin at a reduced level had a faster response to scratch-wounding, forming α4-positive puncta and protruding lamellipodia much earlier. While enhancing lamellipodia protrusion, this mutation reduces random motility of the cells in Transwell assays, indicating that lamellipodia protrusion and random motility are distinct types of motile activities that are differentially regulated by interactions between α4β1 and paxillin. Finally, we show that, at the leading edge, α4-positive puncta and paxillin-positive focal complexes/adhesions do not colocalize, but α4β1 and paxillin colocalize partially in ruffles. These findings provide evidence for a specific role of α4β1 in lamellipodia protrusion that is distinct from the motility-promoting functions of α5β1 and other integrins that mediate cell adhesion and signaling events through focal complexes and focal adhesions.


1997 ◽  
Vol 139 (6) ◽  
pp. 1465-1476 ◽  
Author(s):  
Norio Sakai ◽  
Keiko Sasaki ◽  
Natsu Ikegaki ◽  
Yasuhito Shirai ◽  
Yoshitaka Ono ◽  
...  

We expressed the γ-subspecies of protein kinase C (γ-PKC) fused with green fluorescent protein (GFP) in various cell lines and observed the movement of this fusion protein in living cells under a confocal laser scanning fluorescent microscope. γ-PKC–GFP fusion protein had enzymological properties very similar to that of native γ-PKC. The fluorescence of γ-PKC– GFP was observed throughout the cytoplasm in transiently transfected COS-7 cells. Stimulation by an active phorbol ester (12-O-tetradecanoylphorbol 13-acetate [TPA]) but not by an inactive phorbol ester (4α-phorbol 12, 13-didecanoate) induced a significant translocation of γ-PKC–GFP from cytoplasm to the plasma membrane. A23187, a Ca2+ ionophore, induced a more rapid translocation of γ-PKC–GFP than TPA. The A23187-induced translocation was abolished by elimination of extracellular and intracellular Ca2+. TPA- induced translocation of γ-PKC–GFP was unidirected, while Ca2+ ionophore–induced translocation was reversible; that is, γ-PKC–GFP translocated to the membrane returned to the cytosol and finally accumulated as patchy dots on the plasma membrane. To investigate the significance of C1 and C2 domains of γ-PKC in translocation, we expressed mutant γ-PKC–GFP fusion protein in which the two cysteine rich regions in the C1 region were disrupted (designated as BS 238) or the C2 region was deleted (BS 239). BS 238 mutant was translocated by Ca2+ ionophore but not by TPA. In contrast, BS 239 mutant was translocated by TPA but not by Ca2+ ionophore. To examine the translocation of γ-PKC–GFP under physiological conditions, we expressed it in NG-108 cells, N-methyl-d-aspartate (NMDA) receptor–transfected COS-7 cells, or CHO cells expressing metabotropic glutamate receptor 1 (CHO/mGluR1 cells). In NG-108 cells , K+ depolarization induced rapid translocation of γ-PKC–GFP. In NMDA receptor–transfected COS-7 cells, application of NMDA plus glycine also translocated γ-PKC–GFP. Furthermore, rapid translocation and sequential retranslocation of γ-PKC–GFP were observed in CHO/ mGluR1 cells on stimulation with the receptor. Neither cytochalasin D nor colchicine affected the translocation of γ-PKC–GFP, indicating that translocation of γ-PKC was independent of actin and microtubule. γ-PKC–GFP fusion protein is a useful tool for investigating the molecular mechanism of γ-PKC translocation and the role of γ-PKC in the central nervous system.


2000 ◽  
Vol 113 (15) ◽  
pp. 2679-2683 ◽  
Author(s):  
K. Sugaya ◽  
M. Vigneron ◽  
P.R. Cook

RNA polymerase II is a multi-subunit enzyme responsible for transcription of most eukaryotic genes. It associates with other complexes to form enormous multifunctional ‘holoenzymes’ involved in splicing and polyadenylation. We wished to study these different complexes in living cells, so we generated cell lines expressing the largest, catalytic, subunit of the polymerase tagged with the green fluorescent protein. The tagged enzyme complements a deficiency in tsTM4 cells that have a temperature-sensitive mutation in the largest subunit. Some of the tagged subunit is incorporated into engaged transcription complexes like the wild-type protein; it both resists extraction with sarkosyl and is hyperphosphorylated at its C terminus. Remarkably, subunits bearing such a tag can be incorporated into the active enzyme, despite the size and complexity of the polymerizing complex. Therefore, these cells should prove useful in the analysis of the dynamics of transcription in living cells.


2000 ◽  
Vol 276 (15) ◽  
pp. 11821-11829 ◽  
Author(s):  
Henning Wellmann ◽  
Barbara Kaltschmidt ◽  
Christian Kaltschmidt

The mechanism by which signals such as those produced by glutamate are transferred to the nucleus may involve direct transport of an activated transcription factor to trigger long-term transcriptional changes. Ionotropic glutamate receptor activation or depolarization activates transcription factor NF-κB and leads to translocation of NF-κB from the cytoplasm to the nucleus. We investigated the dynamics of NF-κB translocation in living neurons by tracing the NF-κB subunit RelA (p65) with jellyfish green fluorescent protein. We found that green fluorescent protein-RelA was located in either the nucleus or cytoplasm and neurites, depending on the coexpression of the cognate inhibitor of NF-κB, IκB-α. Stimulation with glutamate, kainate, or potassium chloride resulted in a redistribution of NF-κB from neurites to the nucleus. This transport depended on an intact nuclear localization signal on RelA. Thus, in addition to its role as a transcription factor, NF-κB may be a signal transducer, transmitting transient glutamatergic signals from distant sites to the nucleus.


1997 ◽  
Vol 3 (S2) ◽  
pp. 139-140
Author(s):  
John Presley ◽  
Koret Hirschberg ◽  
Nelson Cole

The ts045 mutant of VSV G protein has been used in numerous studies to identify biochemical and morphological properties of membrane transport, due to its reversible misfolding and retention in the ER at 40°C and ability to traffic out of the ER and into the Golgi complex upon temperature reduction to 32oC. The dynamic properties of membrane transport intermediates of the secretory pathway, including their lifetime and fate within cells, have not until now been explored due to the inability to follow transport in single living cells. Here, we attached green fluorescent protein to the cytoplasmic tail of VSV G protein in order to visualize ER-to-Golgi and Golgi-to-plasma membrane transport in living cells. VSVG-GFP expressed in Cos cells accumulated in the ER at 40°C and translocated to the Golgi complex when shifted to 32oC. Translocation of the protein was followed using time-lapse imaging of live cells on a confocal microscope. VSVG-GFP accumulated in tubulovesicular structures scattered throughout the cell upon shift from 40°C to 15°C for three hours.


1999 ◽  
Vol 260 (3) ◽  
pp. 712-717 ◽  
Author(s):  
Hsiao-Sheng Liu ◽  
Ming-Shiou Jan ◽  
Chao-Kai Chou ◽  
Ping-Hong Chen ◽  
Nir-Jihn Ke

Sign in / Sign up

Export Citation Format

Share Document